数论(费马小定理求逆元+前缀和)
http://acm.hdu.edu.cn/showproblem.php?pid=5976
题意:给你一个数n,拆成不同的几份,使乘积最大。
解法:从2开始拆 2 , 3 , 4 ....l , 最后会余下x , 0<=x <= l ;
再将x从后往前依次分配1给各元素。
1、x == l:3*4*5*...l * (l+2) = (csum[l] / 2) % mod * (l+2) (除以2要转为乘以2的逆元)
2、x == 0 : 2*3*...*l = csum[l]
3、x != 0 && x != l : 2 * 3 *...k * k+2*...l+1 = csum[l+1] / (index - c+ 1) (逆元求解)
//#include <bits/stdc++.h> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <algorithm> #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdio.h> #include <queue> #include <stack> #include <map> #include <set> #include <string.h> #include <vector> #define ME(x , y) memset(x , y , sizeof(x)) #define SF(n) scanf("%d" , &n) #define rep(i , n) for(int i = 0 ; i < n ; i ++) #define INF 0x3f3f3f3f #define mod 1000000007 using namespace std; typedef long long ll ; ll sum[100009]; ll csum[100009]; ll quickpow(ll a , ll b) { ll ans = 1 ; while(b) { if(b&1) { ans = ans * a % mod ; } b >>= 1 ; a = a * a % mod; } return ans ; } int main() { ll t ; scanf("%lld" , &t); for(int i = 2 ; i <= 100000 ; i++) { sum[i] += sum[i-1] + i ; } csum[1] = 1 ; for(int i = 2 ; i <= 100000 ; i++) { csum[i] = (csum[i-1] * i) % mod ; } while(t--) { ll n ; scanf("%lld" , &n); if(n <= 4) { printf("%lld\n" , n); continue ; } int index = upper_bound(sum , sum+100000 , n) - sum; index-- ; if(n - sum[index] == 0) { printf("%lld\n" , csum[index]); } else if(n - sum[index] == index) { printf("%lld\n" , csum[index] % mod * quickpow(2 , mod-2) % mod * (index + 2) % mod); } else { ll c = n - sum[index]; printf("%lld\n" , csum[index] % mod * quickpow(index - c + 1 , mod - 2) % mod * (index+1) % mod); } } return 0 ; }
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步