xxx2715天10小时19分41秒

数论(费马小定理求逆元+前缀和)

http://acm.hdu.edu.cn/showproblem.php?pid=5976

题意:给你一个数n,拆成不同的几份,使乘积最大。

解法:从2开始拆 2 , 3 , 4 ....l  , 最后会余下x , 0<=x <= l ;

再将x从后往前依次分配1给各元素。

1、x == l:3*4*5*...l * (l+2)  = (csum[l] / 2) % mod * (l+2) (除以2要转为乘以2的逆元)

2、x == 0 : 2*3*...*l = csum[l]

3、x != 0 && x != l : 2 * 3 *...k * k+2*...l+1 = csum[l+1] / (index - c+ 1) (逆元求解)

 

复制代码
//#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF  0x3f3f3f3f
#define mod 1000000007
using namespace std;
typedef long long ll ;
ll sum[100009];
ll csum[100009];


ll quickpow(ll a , ll b)
{
    ll ans = 1 ;
    while(b)
    {
        if(b&1)
        {
            ans = ans * a % mod ;
        }
        b >>= 1 ;
        a = a * a % mod;
    }
    return ans ;
}

int main()
{
    ll t ;
    scanf("%lld" , &t);
    for(int i = 2 ; i <= 100000 ; i++)
    {
        sum[i] += sum[i-1] + i ;
    }
    csum[1] = 1 ;
    for(int i = 2 ; i <= 100000 ; i++)
    {
        csum[i] = (csum[i-1] * i) % mod ;
    }

    while(t--)
    {
        ll n ;
        scanf("%lld" , &n);
        if(n <= 4)
        {
            printf("%lld\n" , n);
            continue ;
        }
        int index = upper_bound(sum , sum+100000 , n) - sum;
        index-- ;
        if(n - sum[index] == 0)
        {
            printf("%lld\n" , csum[index]);
        }
        else if(n - sum[index] == index)
        {
            printf("%lld\n" , csum[index] % mod * quickpow(2 , mod-2) % mod * (index + 2) % mod);
        }
        else
        {
            ll c = n - sum[index];
            printf("%lld\n" , csum[index] % mod * quickpow(index - c + 1 , mod - 2) % mod * (index+1) % mod);
        }



    }


    return 0 ;
}
复制代码

 

posted @   无名菜鸟1  阅读(211)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示