补得甚是艰辛
-如非必要,不用STL-患者红小豆上线
参考于:https://www.cnblogs.com/Dillonh/p/11240083.html(为了两个continue还在评论区叨扰了一下,多次试验之后似乎有点明白,趁没被注意偷偷删掉:P)
https://www.cnblogs.com/tian-luo/p/11254151.html(%%%)
HDU-6592 Beauty of unimodal sequence
调完了诸如中括号里打了另一个数组的下标之类的bug之后,最大的wa点是dp数组大小少打个0
const xx maxn 一个错全都错,还是每个数组打一次大小 一个错错一个,这是一个问题_(:з」∠)_
输出格式好要命啊啊啊wa之后还来了发PE
正文:首先对序列正着跑一边LIS,再反着跑一遍,分别记录下标(ppo-positive,opo-over:P)顺便给po初始化一下;
原blog开了两个vector,小可寻思着一个数组(叫v吧)加个下标变量就可以复用。
task1 字典序最小下标序列--开始找峰,字典序最小,所以一旦找到,就用这个。接着开始从峰向前找尽量靠前的同LIS下标的数,看了原blog第一个continue的条件,感觉不会有那种情况,然后就得寸进尺地(x)想去掉第二个continue,然而第二个是有去重作用的_(:з」∠)_查了好久的输出文件突然察觉到这个问题。前面查完了再查后面,后面的部分就是只要符合条件就拿,这样下标最小。stack和v倒腾一下输出就完事了。
task 2 字典序最大下标序列--开始找峰,找到尽量靠后的那个峰,顺手重新初始化po。往前找,找到就拿,这样下标最大。往后找,(一个迷之懒得用reverse的红小豆就用v模拟了一个stack)进行和task1里的前半部分类似的操作。输出完事。
细节见码
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<stack> using namespace std; typedef long long LL; int n; int num[300005], ppo[300005], opo[300005], v[300005], d[300005], po[300005]; stack<int>sa; int main() { while (~scanf("%d", &n)) { memset(d, 0x3f, sizeof d); d[0] = 0; for (int i = 1; i <= n; i++) { scanf("%d", &num[i]); ppo[i] = lower_bound(d + 1, d + 1 + n, num[i]) - d; d[ppo[i]] = num[i]; po[i] = 0x3f3f3f3f; } memset(d, 0x3f, sizeof d); d[0] = 0; for (int i = n; i >= 1; i--) { opo[i] = lower_bound(d + 1, d + 1 + n, num[i]) - d; d[opo[i]] = num[i]; } int co = 0; int now = 1, m = ppo[1] + opo[1]; for (int i = 2; i <= n; i++) if (ppo[i] + opo[i] > m) { now = i; m = opo[i] + ppo[i]; } po[ppo[now]] = num[now]; for (int i = now - 1; i >= 1; i--) { if (po[ppo[i] + 1] <= num[i]) continue; while (!sa.empty() && ppo[i] >= ppo[sa.top()])po[ppo[sa.top()]] = 0x3f3f3f3f, sa.pop(); sa.push(i); po[ppo[i]] = num[i]; } while (!sa.empty()) v[co++] = sa.top(), sa.pop(); v[co++] = now; for (int i = now + 1; i <= n; i++) if (opo[i] == opo[v[co - 1]] - 1 && num[i] < num[v[co - 1]])v[co++] = i; for (int i = 0; i < co; i++)printf("%d%c", v[i], " \n"[i == co - 1]); co = 0; now = 1; m = ppo[1] + opo[1]; po[1] = 0x3f3f3f3f; for (int i = 2; i <= n; i++) { if (ppo[i] + opo[i] >= m) { now = i; m = opo[i] + ppo[i]; } po[i] = 0x3f3f3f3f; } sa.push(now); for (int i = now - 1; i >= 1; i--) if (ppo[i] == ppo[sa.top()] - 1 && num[i] < num[sa.top()])sa.push(i); while (!sa.empty())v[co++] = sa.top(), sa.pop(); po[opo[now]] = num[now]; for (int i = now + 1; i <= n; i++) { if (num[i] >= po[opo[i] + 1]) continue; while (co && opo[i] >= opo[v[co - 1]])po[opo[v[co - 1]]] = 0x3f3f3f3f, co--; v[co++] = i; po[opo[i]] = num[i]; } for (int i = 0; i < co; i++)printf("%d%c", v[i], " \n"[i == co - 1]); } return 0; }
(新建之前想着还有什么要写来着但是忘了。。想起来再说)
upd:
HDU-6599 I Love Palindrome String
今天,你学回文树了吗?https://blog.csdn.net/u013368721/article/details/42100363
整个学习过程充满指针乱跳,终于是大概知道怎么用了,配上Thor的马拉车板子,开始乱搞。
大佬题解中非常神奇的部分是在回文树中自加的那个函数,将原回文串中的下标映射回马拉车得到的回文串的长度数组的下标,检查半个回文串的长度,判断是否符合条件
一开始各种T,学大佬加了一些inline和register之后又wa来wa去,检查了马拉车后来加的两个数组发现开小了_(:з」∠)_
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> using namespace std; typedef long long LL; const int MAXN = 300005; const int N = 26; int ans[MAXN], rlen[MAXN * 2]; char a[MAXN]; char str[MAXN * 2]; int R[MAXN*2]; struct Palindromic_Tree { int next[MAXN][N], fail[MAXN], cnt[MAXN], len[MAXN], S[MAXN], n, p, last; int l[MAXN], r[MAXN]; inline int newnode(int l) { for (register int i = 0; i < N; ++i) next[p][i] = 0; cnt[p] = 0; len[p] = l; return p++; } void init() { p = 0; newnode(0); newnode(-1); last = 0; n = 0; S[n] = -1; fail[0] = 1; } inline int get_fail(int x) { while (S[n - len[x] - 1] != S[n]) x = fail[x]; return x; } inline void add(int c) { c -= 'a'; S[++n] = c; int cur = get_fail(last); if (!next[cur][c]) { int now = newnode(len[cur] + 2); fail[now] = next[get_fail(fail[cur])][c]; next[cur][c] = now; l[now] = n - len[cur] - 1; r[now] = n; } last = next[cur][c]; cnt[last] ++; } void count() { for (register int i = p - 1; i >= 0; --i) cnt[fail[i]] += cnt[i]; } void map() { count(); for (int i = 2; i < p; i++) { int ml = l[i] << 1, mmid = (l[i] + r[i]) >> 1 << 1; int mid = (ml + mmid) >> 1; if (mid - rlen[mid] + 1 <= ml)ans[len[i]] += cnt[i]; } } }pt; void ma(int m) { memset(R, 0, sizeof(R)); int n = 0; str[n++] = '!'; str[n++] = '#'; for (int i = 1; i <= m; i++) str[n++] = a[i], str[n++] = '#'; str[n++] = '#'; str[n++] = '?'; int p = 0, mx = 0, ans = 0; for (int i = 1; i < n; i++) { R[i] = mx > i ? min(R[2 * p - i], mx - i) : 1; while (str[i + R[i]] == str[i - R[i]]) R[i]++; if (R[i] + i > mx) mx = i + R[p = i]; rlen[i] = R[i] - 1; } } int main() { while (~scanf("%s", a + 1)) { pt.init(); int l = strlen(a + 1); for (int i = 1; i <= l; i++)pt.add(a[i]), ans[i] = 0; ma(l); pt.map(); for (int i = 1; i <= l; i++)printf("%d%c", ans[i], " \n"[i == l]); } return 0; }