神经网络入门回顾(感知器、多层感知器)中整理了关于感知器和多层感知器的理论,这里实现关于与门与非门或门异或门的代码,以便对感知器有更好的感觉。

此外,我们使用 pytest 框架进行测试。

pip install pytest

与门、与非门、或门

通过一层感知器就可以实现与门与非门或门

先写测试代码 test_perception.py:

 1 from perception import and_operate, nand_operate, or_operate
 2 
 3 
 4 def test_and_operate():
 5     """
 6     测试与门
 7     :return:
 8     """
 9     assert and_operate(1, 1) == 1
10     assert and_operate(1, 0) == 0
11     assert and_operate(0, 1) == 0
12     assert and_operate(0, 0) == 0
13 
14 
15 def test_nand_operate():
16     """
17     测试与非门
18     :return:
19     """
20     assert nand_operate(1, 1) == 0
21     assert nand_operate(1, 0) == 1
22     assert nand_operate(0, 1) == 1
23     assert nand_operate(0, 0) == 1
24 
25 
26 def test_or_operate():
27     """
28     测试或门
29     :return:
30     """
31     assert or_operate(1, 1) == 1
32     assert or_operate(1, 0) == 1
33     assert or_operate(0, 1) == 1
34     assert or_operate(0, 0) == 0

写完测试代码,后面直接输入命令  pytest -v  即可测试代码。

这三个门的权重偏置是根据人的直觉或者画图得到的,并且不是唯一的。以下是简单的实现,在 perception.py 中写上:

 1 import numpy as np
 2 
 3 
 4 def step_function(x):
 5     """
 6     阶跃函数
 7     :param x:
 8     :return:
 9     """
10     if x <= 0:
11         return 0
12     else:
13         return 1
14 
15 
16 def and_operate(x1, x2):
17     """
18     与门
19     :param x1:
20     :param x2:
21     :return:
22     """
23     x = np.array([x1, x2])
24     w = np.array([0.5, 0.5])
25     b = -0.7
26     return step_function(np.sum(w * x) + b)
27 
28 
29 def nand_operate(x1, x2):
30     """
31     与非门
32     :param x1:
33     :param x2:
34     :return:
35     """
36     x = np.array([x1, x2])
37     w = np.array([-0.5, -0.5])
38     b = 0.7
39     return step_function(np.sum(w * x) + b)
40 
41 
42 def or_operate(x1, x2):
43     """
44     或门
45     :param x1:
46     :param x2:
47     :return:
48     """
49     x = np.array([x1, x2])
50     w = np.array([0.5, 0.5])
51     b = -0.3
52     return step_function(np.sum(w * x) + b)

运行  pytest -v 确认测试通过。

========================================================================== test session starts ===========================================================================
platform darwin -- Python 3.6.8, pytest-5.1.2, py-1.8.0, pluggy-0.12.0 -- /Users/mac/.virtualenvs/work/bin/python3
...
collected 3 items                                                                                                                                                        

test_perception.py::test_and_operate PASSED                                                                                                                        [ 33%]
test_perception.py::test_nand_operate PASSED                                                                                                                       [ 66%]
test_perception.py::test_or_operate PASSED                                                                                                                         [100%]

=========================================================================== 3 passed in 0.51s ============================================================================

异或门

 

 

如上图所示,由于异或门不是线性可分的,因此需要多层感知器的结构。

使用两层感知器可以实现异或门。

修改 test_perception.py 文件,加入异或门的测试代码 :

from perception import and_operate, nand_operate, or_operate, xor_operate

以及

def test_xor_operate():
    """
    测试异或门
    :return:
    """
    assert xor_operate(1, 1) == 0
    assert xor_operate(1, 0) == 1
    assert xor_operate(0, 1) == 1
    assert xor_operate(0, 0) == 0

在 perception.py 文件里加入异或门的函数:

def xor_operate(x1, x2):
    """
    异或门
    :param x1:
    :param x2:
    :return:
    """
    s1 = nand_operate(x1, x2)
    s2 = or_operate(x1, x2)
    return and_operate(s1, s2)

我们通过与非门和或门的线性组合实现了异或门。

运行命令  pytest -v 测试成功。

========================================================================== test session starts ===========================================================================
platform darwin -- Python 3.6.8, pytest-5.1.2, py-1.8.0, pluggy-0.12.0 -- /Users/mac/.virtualenvs/work/bin/python3
...
collected 4 items                                                                                                                                                        

test_perception.py::test_and_operate PASSED                                                                                                                        [ 25%]
test_perception.py::test_nand_operate PASSED                                                                                                                       [ 50%]
test_perception.py::test_or_operate PASSED                                                                                                                         [ 75%]
test_perception.py::test_xor_operate PASSED                                                                                                                        [100%]

=========================================================================== 4 passed in 0.60s ============================================================================

 

原文作者:雨先生
原文链接:https://www.cnblogs.com/noluye/p/11465389.html  
许可协议:知识共享署名-非商业性使用 4.0 国际许可协议

 

参考

 posted on 2019-09-05 13:39  何雨龙  阅读(4012)  评论(0编辑  收藏  举报