摘要: 前向、后向算法解决的是一个评估问题,即给定一个模型,求某特定观测序列的概率,用于评估该序列最匹配的模型。Baum-Welch算法解决的是一个模型训练问题,即参数估计,是一种无监督的训练方法,主要通过EM迭代实现;维特比算法解决的是给定 一个模型和某个特定的输出序列,求最可能产生这个输出的状态序列。如 阅读全文
posted @ 2017-02-23 20:14 nolonely 阅读(234) 评论(0) 推荐(0) 编辑
摘要: 判别式模型(Discriminative Model)是直接对条件概率p(y|x;θ)建模。常见的判别式模型有线性回归模型、线性判别分析、支持向量机SVM、神经网络、boosting、条件随机场等。 举例:要确定一个羊是山羊还是绵羊,用判别模型的方法是从历史数据中学习到模型,然后通过提取这只羊的特征 阅读全文
posted @ 2017-02-23 20:02 nolonely 阅读(13533) 评论(0) 推荐(4) 编辑
摘要: 数据降维的目的:数据降维,直观地好处是维度降低了,便于计算和可视化,其更深层次的意义在于有效信息的提取综合及无用信息的摈弃。 数据降维的好处:降维可以方便数据可视化+数据分析+数据压缩+数据提取等。 降维方法 __ 属性选择:过滤法;包装法;嵌入法; |_ 映射方法 _线性映射方法:PCA、LDA、 阅读全文
posted @ 2017-02-23 19:51 nolonely 阅读(12569) 评论(0) 推荐(0) 编辑
摘要: 特征选择方法初识: 1、为什么要做特征选择在有限的样本数目下,用大量的特征来设计分类器计算开销太大而且分类性能差。2、特征选择的确切含义将高维空间的样本通过映射或者是变换的方式转换到低维空间,达到降维的目的,然后通过特征选取删选掉冗余和不相关的特征来进一步降维。3、特征选取的原则获取尽可能小的特征子 阅读全文
posted @ 2017-02-23 19:36 nolonely 阅读(54098) 评论(1) 推荐(4) 编辑