luoguP3227 [HNOI2013]切糕

题意

下面变量意义:\(n:P,m:Q,K:R\)

先考虑没有\(D\)限制怎么做,我们只需要对\(n*m\)个点的所有\(K\)个值找最小值的即可。

发现这可以转化成网络流最小割:
1.从\(S\)向每个\((i,j,1)\)连容量为\(inf\)的边。
2.从\((i,j,k)\ k\in[1,K-1]\)\((i,j,k+1)\)连容量为\(a_{i,j,k}\)的边。
3.从\((i,j,K)\)\(T\)连容量为\(a_{i,j,K}\)的边。

现在我们考虑怎么处理\(D\)的限制:

假设现在有两个相邻的点,我们将第一列中的点称为\(1,2,3...\),第二列的点称为\(1',2',3'...\)

我们考虑第一列割了\(i\),那么第二列的选择只有\([(i-D)',(i+D)']\),我们可以从\(i\)\((i-D)'\)连一条容量为\(inf\)的边,这是我们发现如果割了\((i-D)'\)往前的边,仍存在一条从\(S->i->(i-D)'->T\)的路径,这是我们解决了不小于\((i-D)'\)的限制,因为是对称的,我们也会从\((i+D)'\)\(i\)连一条边,于是我们也满足了不大于\((i+D)'\)的限制。

如图:

code:

#include<bits/stdc++.h>
using namespace std;
const int maxn=50;
const int maxl=125010;
const int inf=1e9;
const int dx[]={-1,1,0,0};
const int dy[]={0,0,-1,1};
int n,m,K,D,cnt=1,S,T,tot;
int head[maxl],cur[maxl],dep[maxl];
int a[maxn][maxn][maxn],id[maxn][maxn][maxn];
struct edge{int to,nxt,flow;}e[maxl<<5];
inline void add(int u,int v,int w)
{
	e[++cnt].nxt=head[u];
	head[u]=cnt;
	e[cnt].to=v;
	e[cnt].flow=w;
}
inline void addflow(int u,int v,int w){add(u,v,w),add(v,u,0);}
inline int read()
{
	char c=getchar();int res=0,f=1;
	while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
	while(c>='0'&&c<='9')res=res*10+c-'0',c=getchar();
	return res*f;
}
inline bool bfs()
{
    memset(dep,0,sizeof(dep));
    for(int i=S;i<=T;i++)cur[i]=head[i];
    queue<int>q;
    q.push(S);dep[S]=1;
    while(!q.empty())
    {
        int x=q.front();q.pop();
        for(int i=head[x];i;i=e[i].nxt)
        {
            int y=e[i].to;
            if(dep[y]||e[i].flow<=0)continue;
            dep[y]=dep[x]+1;q.push(y);
        }
    }
    return dep[T]>0;
}
int dfs(int x,int lim)
{
    if(x==T||lim<=0)return lim;
    int res=lim;
    for(int i=cur[x];i;i=e[i].nxt)
    {
        cur[x]=i;
        int y=e[i].to;
        if(dep[y]!=dep[x]+1||e[i].flow<=0)continue;
        int tmp=dfs(y,min(res,e[i].flow));
        if(tmp<=0)dep[y]=0;
        res-=tmp;
        e[i].flow-=tmp,e[i^1].flow+=tmp;
        if(res<=0)break;
    }
    return lim-res;
}
inline int Dinic()
{
    int res=0;
    while(bfs())res+=dfs(S,inf);
    return res;
}
int main()
{
	//freopen("test.in","r",stdin);
	//freopen("test.out","w",stdout);
	n=read(),m=read(),K=read(),D=read();
	for(int k=1;k<=K;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++)
				a[i][j][k]=read(),id[i][j][k]=++tot;
	S=0,T=tot+1;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			addflow(S,id[i][j][1],inf);
			for(int k=1;k<K;k++)addflow(id[i][j][k],id[i][j][k+1],a[i][j][k]);
			addflow(id[i][j][K],T,a[i][j][K]);
		}
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
			for(int k=1;k<=K;k++)
			{	
				if(k<=D)continue;
				for(int u=0;u<4;u++)
				{
					int x=i+dx[u],y=j+dy[u];
					if(x<1||x>n||y<1||y>m)continue;
					addflow(id[i][j][k],id[x][y][k-D],inf);
				}
			}
	printf("%d",Dinic());
	return 0;
}
posted @ 2019-12-26 11:19  nofind  阅读(89)  评论(0编辑  收藏  举报