luoguP3327 [SDOI2015]约数个数和

题意

首先有个结论:
\(d(i,j)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1]\)
证明:
假设\(i=p_1^{a_1}*p_2^{a_2}*...*p_k^{a_k},j=p_1^{b_1}*p_2^{b_2}*...*p_k^{b_k}\),则\(i*j=p_1^{a_1+b_1}*p_2^{a_2+b_2}*...*p_k^{a_k+b_k}\)

考虑第\(i\)个质因子\(p_i\),如果\(x,y\)互质,则\(x,y\)只能有一个有\(p_i\),x有是\(a_i\)种,\(y\)有是\(b_i\)种,都没有是1种,总共\((a_i+b_i+1)\)种,与约数个数和公式中相符。

于是式子变为:
\(\sum\limits_{i=1}^n\sum\limits_{j=1}^{m}\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\)
改为枚举\(x,y\)
\(\sum\limits_{x=1}^{n}\sum\limits_{y=1}^m[\gcd(x,y)=1]*\frac{n}{x}*\frac{m}{y}\)

\(f(x)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^m\frac{n}{i}*\frac{m}{j}*[\gcd(i,j)=x],F(x)=\sum\limits_{n|d}f(d)\)

则:
\(F(x)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{n}{i}*\frac{m}{j}*[x|\gcd(i,j)]\)
提出\(x\)
\(F(x)=\sum\limits_{i=1}^{\frac{n}{x}}\sum\limits_{j=1}^{\frac{m}{x}}\frac{n}{i*x}*\frac{m}{j*x}*[1|\gcd(i,j)]\)
即:
\(F(x)=\sum\limits_{i=1}^{\frac{n}{x}}\sum\limits_{j=1}^{\frac{m}{x}}\frac{n}{i*x}*\frac{m}{j*x}\)

莫比乌斯反演:
\(f(x)=\sum\limits_{x|d}\mu(\frac{d}{x})F(x)\)
\(ans=f(1)=\sum\limits_{1|d}\mu(\frac{d}{1})F(d)\)
\(=\sum\limits_{d=1}^{min(n,m)}\mu(d)\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}\frac{n}{i*d}*\frac{m}{j*d}\)

预处理\(g(x)=\sum\limits_{i=1}^{x}\frac{x}{i}\),并求出莫比乌斯函数的前缀和\(sum_i\),后面那一部分显然可以除法分块。

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5*1e4+10;
int T,n,m;
int mu[maxn],sum[maxn];
ll g[maxn];
bool vis[maxn];
vector<int>prime;
inline void shai(int n)
{
	vis[1]=1;mu[1]=1;
	for(int i=2;i<=n;i++)
	{
		if(!vis[i])prime.push_back(i),mu[i]=-1;
		for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
		{
			vis[i*prime[j]]=1;
			if(i%prime[j]==0)break;
			mu[i*prime[j]]=-mu[i];
		}
	}
	for(int i=1;i<=n;i++)sum[i]=sum[i-1]+mu[i];
	for(int i=1;i<=n;i++)
		for(int l=1,r;l<=i;l=r+1)	
			r=i/(i/l),g[i]+=1ll*(r-l+1)*(i/l);
}
inline ll solve(int n,int m)
{
	ll res=0;
	for(int l=1,r;l<=min(n,m);l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		res+=1ll*(sum[r]-sum[l-1])*g[n/l]*g[m/l];
	}
	return res;
}
int main()
{
	shai(50000);
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&m);
		printf("%lld\n",solve(n,m));
	}
	return 0;
}
posted @ 2019-11-27 17:17  nofind  阅读(114)  评论(0编辑  收藏  举报