import torch
import torch.nn as nn
import numpy as np
import torch.optim as optim
class RNN(nn.Module):
def __init__(self,input_dim , hidden_dim , out_dim):
super(RNN,self).__init__()
self.linear_1 = nn.Linear(input_dim , hidden_dim)
self.linear_2 = nn.Linear(hidden_dim , hidden_dim)
self.linear_3 = nn.Linear(hidden_dim, out_dim)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.hidden_size = hidden_dim
def forward(self, input , hidden_input):
input = input.view(1, 1, -1)
hy = self.relu(self.linear_1(input) + self.linear_2(hidden_input))
output = self.sigmoid(self.linear_3(hy))
return output , hy
def init_weight(self):
nn.init.normal_(self.linear_1.weight.data , 0 , np.sqrt(2 / 16))
nn.init.uniform_(self.linear_1.bias, 0, 0)
nn.init.normal_(self.linear_2.weight.data, 0, np.sqrt(2 / 16))
nn.init.uniform_(self.linear_2.bias, 0, 0)
nn.init.normal_(self.linear_3.weight.data , 0 , np.sqrt(2 / 16))
nn.init.uniform_(self.linear_3.bias, 0, 0)
def init_hidden(self):
return torch.zeros([1,1,self.hidden_size])
def train(input_seq , target, encoder , optim , criterion ,max_length):
optim.zero_grad()
hidden = encoder.init_hidden()
encoder_outputs = torch.zeros(max_length)
for ndx in range(max_length):
x_in = torch.Tensor([input_seq[0][ndx] , input_seq[1][ndx]])
output , hidden = encoder(x_in , hidden)
encoder_outputs[ndx] = output[0,0]
target = torch.Tensor(target)
loss = criterion(encoder_outputs, target)
loss.backward()
optim.step()
return loss , encoder_outputs
def trainIter(batch_x , batch_y , encoder , max_length,learning_rate):
encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
criterion = nn.MSELoss()
loss = 0
predict = np.zeros([batch_size , max_length])
for ndx in range(len(batch_x)):
loss_ , encoder_outputs = train(batch_x[ndx],batch_y[ndx], encoder ,encoder_optimizer,criterion, max_length)
loss += loss_
predict[ndx] = encoder_outputs.detach().numpy()
return loss , predict
def getBinDict(bit_size = 16):
max = pow(2,bit_size)
bin_dict = {}
for i in range(max):
s = '{:016b}'.format(i)
arr = np.array(list(reversed(s)))
arr = arr.astype(int)
bin_dict[i] = arr
return bin_dict
binary_dim = 16
int2binary = getBinDict(binary_dim)
def getBatch( batch_size , binary_size):
x = np.random.randint(0,256,[batch_size , 2])
batch_x = np.zeros([batch_size , 2,binary_size] )
batch_y = np.zeros([batch_size , binary_size])
for i in range(0 , batch_size):
batch_x[i][0] = int2binary[x[i][0]]
batch_x[i][1] = int2binary[x[i][1]]
batch_y[i] = int2binary[x[i][0] + x[i][1]]
return batch_x , batch_y , [a + b for a,b in x]
def getInt(y , bit_size):
arr = np.zeros([len(y)])
for i in range(len(y)):
for j in range(bit_size):
arr[i] += (int(y[i][j]) * pow(2 , j))
return arr
if __name__ == '__main__':
input_size = 2
hidden_size = 8
batch_size = 100
net = RNN(input_size, hidden_size , 1)
net.init_weight()
print(net)
for i in range(100000):
net.zero_grad()
h0 = torch.zeros(1, batch_size, hidden_size)
x , y , t = getBatch(batch_size , binary_dim)
loss , outputs = trainIter(x , y , net , binary_dim , 0.01)
print('iterater:%d loss:%f' % (i, loss))
if i % 100== 0:
output2 = np.round(outputs)
result = getInt(output2,binary_dim)
print(t ,'\n', result)
print('iterater:%d loss:%f'%(i , loss))