【洛谷】P1388 算式(dp)

题目描述

给出N个数字,不改变它们的相对位置,在中间加入K个乘号和N-K-1个加号,(括号随便加)使最终结果尽量大。因为乘号和加号一共就是N-1个了,所以恰好每两个相邻数字之间都有一个符号。例如:

N=5, K=2,5个数字分别为1、2、3、4、5,可以加成:

1*2*(3+4+5)=24

1*(2+3)*(4+5)=45

(1*2+3)*(4+5)=45

……

输入输出格式

输入格式:

 

输入文件共有二行,第一行为两个有空格隔开的整数,表示N和K,其中(2<=N<=15, 0<=K<=N-1)。第二行为 N个用空格隔开的数字(每个数字在0到9之间)。

 

输出格式:

 

输出文件仅一行包含一个整数,表示要求的最大的结果

最后的结果<=maxlongint

 

输入输出样例

输入样例#1: 复制
5 2
1 2 3 4 5
输出样例#1: 复制
120


-----------------------------------------------------------------------------
分析:一开始想用dp[i][j]表示i到j个数的最大值,可发现无论在循环上限还是其他地方都用不上k,然后我就看了题解这么想:在这题中,可以用dp[i][j]表示在前i个数中插入j个乘号。我们可以先处理前缀和,将dp[i][0]设为从a[1]加到a[i]的值,接着跑一个循环,寻找位置,插入一个乘号。就这样递推就可以得出答案了。
 1 #include <cstdio>
 2 #include <algorithm>
 3 using namespace std;
 4 int dp[20][20],a[20];
 5 int main()
 6 {
 7     int x,n,k;
 8     scanf("%d%d",&n,&k);
 9     for(int i=1;i<=n;i++) 
10     {
11         scanf("%d",&x);
12         a[i]=a[i-1]+x;//前缀和 
13         dp[i][0]=a[i];
14     }
15     for(int i=1;i<=n;i++)
16     for(int j=1;j<=min(k,i-1);j++)
17     {
18         for(int k=1;k<=i;k++)
19             dp[i][j]=max(dp[i][j],dp[k][j-1]*(a[i]-a[k]));
20     }
21     printf("%d",dp[n][k]);
22     return 0;
23 }

 

posted @ 2017-10-26 21:54  noble_(noblex)  阅读(390)  评论(0编辑  收藏  举报
/* */