select函数:
【转】
select函数:
系统提供select函数来实现多路复用输入/输出模型。原型:
#include <sys/time.h>
#include <unistd.h>
select函数:
系统提供select函数来实现多路复用输入/输出模型。原型:
#include <sys/time.h>
#include <unistd.h>
int select(int maxfd,fd_set *rdset,fd_set *wrset,fd_set *exset,struct timeval *timeout);
参数maxfd是需要监视的最大的文件描述符值+1;rdset,wrset,exset分别对应于需要检测的可读文件描述符的集合,可写文件描述符的集 合及异常文件描述符的集合。struct timeval结构用于描述一段时间长度,如果在这个时间内,需要监视的描述符没有事件发生则函数返回,返回值为0。
FD_ZERO,FD_SET,FD_CLR,FD_ISSET: 参数maxfd是需要监视的最大的文件描述符值+1;rdset,wrset,exset分别对应于需要检测的可读文件描述符的集合,可写文件描述符的集 合及异常文件描述符的集合。struct timeval结构用于描述一段时间长度,如果在这个时间内,需要监视的描述符没有事件发生则函数返回,返回值为0。
FD_ZERO,FD_SET,FD_CLR,FD_ISSET:
FD_ZERO(fd_set *fdset);将指定的文件描述符集清空,在对文件描述符集合进行设置前,必须对其进行初始化,如果不清空,由于在系统分配内存空间后,通常并不作清空处理,所以结果是不可知的。
FD_SET(fd_set *fdset);用于在文件描述符集合中增加一个新的文件描述符。
FD_CLR(fd_set *fdset);用于在文件描述符集合中删除一个文件描述符。
FD_ISSET(int fd,fd_set *fdset);用于测试指定的文件描述符是否在该集合中。
struct timeval结构:
struct timeval{
long tv_sec;//second
long tv_usec;//minisecond
}
timeout设置情况:
null:select将一直被阻塞,直到某个文件描述符上发生了事件。
0:仅检测描述符集合的状态,然后立即返回,并不等待外部事件的发生。
特定的时间值:如果在指定的时间段里没有事件发生,select将超时返回。
--
('fd_set') 是一组文件描述符(fd)的集合。由于fd_set类型的长度在不同平台上不同,因此应该用一组标准的宏定义来处理此类变量:
fd_set set; FD_ZERO(&set); /* 将set清零 */ FD_SET(fd, &set); /* 将fd加入set */ FD_CLR(fd, &set); /* 将fd从set中清除 */ FD_ISSET(fd, &set); /* 如果fd在set中则真 */
在 过去,一个fd_set通常只能包含少于等于32个文件描述符,因为fd_set其实只用了一个int的比特矢量来实现,在大多数情况下,检查 fd_set能包括任意值的文件描述符是系统的责任,但确定你的fd_set到底能放多少有时你应该检查/修改宏FD_SETSIZE的值。*这个值是系 统相关的*,同时检查你的系统中的select() 的man手册。有一些系统对多于1024个文件描述符的支持有问题。
多路复用的方式是真正实用的服务器程序,非多路复用的网络程序只能作为学习或着陪测的角色。本文说下个人
接触过的多路复用函数:select/poll/epoll/port。kqueue的*nix系统没接触过,估计熟悉了上面
四种,kqueue也只是需要熟悉一下而已。
一、select模型
select原型: int select(int n ,fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
其中参数n表示监控的所有fd中最大值+1。
和select模型紧密结合的四个宏,含义不解释了:
FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_SET(int fd, fd_set *set);
FD_ZERO(fd_set *set);
理解select模型的关键在于理解fd_set,为说明方便,取fd_set长度为1字节,fd_set中的每一bit可以对应一个文件描述符fd。则1字节长的fd_set最大可以对应8个fd。
(1)执行fd_set set; FD_ZERO(&set);则set用位表示是0000,0000。
(2)若fd=5,执行FD_SET(fd,&set);后set变为0001,0000(第5位置为1)
(3)若再加入fd=2,fd=1,则set变为0001,0011
(4)执行select(6,&set,0,0,0)阻塞等待
(5)若fd=1,fd=2上都发生可读事件,则select返回,此时set变为0000,0011。注意:没有事件发生的fd=5被清空。
基于上面的讨论,可以轻松得出select模型的特点:
(1)可监控的文件描述符个数取决与sizeof(fd_set)的值。我这边服务 器上sizeof(fd_set)=512,每bit表示一个文件描述符,则我服务器上支持的最大文件描述符是512*8=4096。据说可调,另有说虽 然可调,但调整上限受于编译内核时的变量值。本人对调整fd_set的大小不太感兴趣,参考http://www.cppblog.com /CppExplore/archive/2008/03/21/45061.html中的模型2(1)可以有效突破select可监控的文件描述符上 限。
(2)将fd加入select监控集的同时,还要再使用一个数据结构array保存放到select监控集中的fd,一是用于再select 返回后,array作为源数据和fd_set进行FD_ISSET判断。二是select返回后会把以前加入的但并无事件发生的fd清空,则每次开始 select前都要重新从array取得fd逐一加入(FD_ZERO最先),扫描array的同时取得fd最大值maxfd,用于select的第一个 参数。
(3)可见select模型必须在select前循环array(加fd,取maxfd),select返回后循环array(FD_ISSET判断是否有时间发生)。
下面给一个伪码说明基本select模型的服务器模型:
array[slect_len];
nSock=0;
array[nSock++]=listen_fd;(之前listen port已绑定并listen)
maxfd=listen_fd;
while{
FD_ZERO(&set);
foreach (fd in array)
{
fd大于maxfd,则maxfd=fd
FD_SET(fd,&set)
}
res=select(maxfd+1,&set,0,0,0);
if(FD_ISSET(listen_fd,&set))
{
newfd=accept(listen_fd);
array[nsock++]=newfd;
if(--res<=0) continue
}
foreach 下标1开始 (fd in array)
{
if(FD_ISSET(fd,&tyle="COLOR: #ff0000">set))
执行读等相关操作
如果错误或者关闭,则要删除该fd,将array中相应位置和最后一个元素互换就好,nsock减一
if(--res<=0) continue
}
}
服务器端代码:
引用
#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
int server_sockfd, client_sockfd;
int server_len, client_len;
struct sockaddr_in server_address;
struct sockaddr_in client_address;
int result;
fd_set readfds, testfds;
/*创建套接字:IPv4, tcp流套接字*/
server_sockfd = socket(AF_INET, SOCK_STREAM, 0);
server_address.sin_family = AF_INET;
/*INADDR_ANY代表本机IP,htonl将其转换为网络字节顺序(大端模式)*/
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_address.sin_port = htons(9734);
server_len = sizeof(server_address);
/*将端口与套接字绑定*/
bind(server_sockfd, (struct sockaddr *)&server_address, server_len);
/*监听,可接受5个连接请求*/
listen(server_sockfd, 5);
FD_ZERO(&readfds);
FD_SET(server_sockfd, &readfds);
/*等待客户端请求*/
while(1) {
char ch;
int fd;
int nread;
testfds = readfds;
/*服务器在select后等待客户端的请求(服务器阻塞)*/
printf("server waiting\n");
result = select(FD_SETSIZE, &testfds, (fd_set *)0,
(fd_set *)0, (struct timeval *)0);
if (result < 1) {
perror("server");
exit(1);
}
/*轮询,实际程序不使用这种极度耗时的方法*/
for (fd = 0; fd < FD_SETSIZE; fd++) {
if (FD_ISSET(fd, &testfds)) {
if (fd == server_sockfd) {
client_len = sizeof(client_address);
client_sockfd = accept(server_sockfd, (struct sockaddr *)&client_address,
&client_len); /*接收客户端连接请求,并返回连接套接字用于收发数据*/
FD_SET(client_sockfd, &readfds); /*需要监视发来请求的客户端*/
printf("adding client on fd %d\n", client_sockfd);
} else { /*客户端发生“状况”*/
ioctl(fd, FIONREAD, &nread);
if (nread == 0) {
close(fd); /*读取不到任何内容,关闭与客户端的连接套接字*/
FD_CLR(fd, &readfds); /*清除客户端套接字描述符,不再对其"关注"*/
printf("removing client on fd %d\n", fd);
} else {
read(fd, &ch, 1);
sleep(5);
printf("serving client on fd %d\n", fd);
ch++;
write(fd, &ch, 1);
}
}
}
}
}
}
例子2
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#define MYPORT 1234 // the port users will be connecting to
#define BACKLOG 5 // how many pending connections queue will hold
#define BUF_SIZE 200
int fd_A[BACKLOG]; // accepted connection fd
int conn_amount; // current connection amount
void showclient()
{
int i;
printf("client amount: %d\n", conn_amount);
for (i = 0; i < BACKLOG; i++)
{
printf("[%d]:%d ", i, fd_A[i]);
}
printf("\n\n");
}
int main(void)
{
int sock_fd, new_fd; // listen on sock_fd, new connection on new_fd
struct sockaddr_in server_addr; // server address information
struct sockaddr_in client_addr; // connector's address information
socklen_t sin_size;
int yes = 1;
char buf[BUF_SIZE];
int ret;
int i;
if ((sock_fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{
perror("socket");
exit(1);
}
if (setsockopt(sock_fd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) == -1)
{
perror("setsockopt");
exit(1);
}
server_addr.sin_family = AF_INET; // host byte order
server_addr.sin_port = htons(MYPORT); // short, network byte order
server_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP
memset(server_addr.sin_zero, '\0', sizeof(server_addr.sin_zero));
if (bind(sock_fd, (struct sockaddr *)&server_addr, sizeof(server_addr)) == -1)
{
perror("bind");
exit(1);
}
if (listen(sock_fd, BACKLOG) == -1)
{
perror("listen");
exit(1);
}
printf("listen port %d\n", MYPORT);
fd_set fdsr;
int maxsock;
struct timeval tv;
conn_amount = 0;
sin_size = sizeof(client_addr);
maxsock = sock_fd;
while (1)
{
// initialize file descriptor set
FD_ZERO(&fdsr);
FD_SET(sock_fd, &fdsr);
// timeout setting
tv.tv_sec = 30;
tv.tv_usec = 0;
// add active connection to fd set
for (i = 0; i < BACKLOG; i++)
{
if (fd_A[i] != 0)
{
FD_SET(fd_A[i], &fdsr);
}
}
ret = select(maxsock + 1, &fdsr, NULL, NULL, &tv);
if (ret < 0)
{
perror("select");
break;
} else if (ret == 0)
{
printf("timeout\n");
continue;
}
// check every fd in the set
for (i = 0; i < conn_amount; i++)
{
if (FD_ISSET(fd_A[i], &fdsr))
{
ret = recv(fd_A[i], buf, sizeof(buf), 0);
if (ret <= 0)
{ // client close
printf("client[%d] close\n", i);
close(fd_A[i]);
FD_CLR(fd_A[i], &fdsr);
fd_A[i] = 0;
}
else
{ // receive data
if (ret < BUF_SIZE)
memset(&buf[ret], '\0', 1);
printf("client[%d] send:%s\n", i, buf);
}
}
}
// check whether a new connection comes
if (FD_ISSET(sock_fd, &fdsr))
{
new_fd = accept(sock_fd, (struct sockaddr *)&client_addr, &sin_size);
if (new_fd <= 0)
{
perror("accept");
continue;
}
// add to fd queue
if (conn_amount < BACKLOG)
{
fd_A[conn_amount++] = new_fd;
printf("new connection client[%d] %s:%d\n", conn_amount,
inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port));
if (new_fd > maxsock)
maxsock = new_fd;
}
else
{
printf("max connections arrive, exit\n");
send(new_fd, "bye", 4, 0);
close(new_fd);
break;
}
}
showclient();
}
// close other connections
for (i = 0; i < BACKLOG; i++)
{
if (fd_A[i] != 0)
{
close(fd_A[i]);
}
}
exit(0);
}