Python说文解字_Python之多任务_02

  第三部分:Semaphore控制进入数量的锁

   有时候可能需要运行多个工作线程同时访问一个资源,但要限制总数。例如,连接池支持同时连接,但是数目可能是固定的,或者一个网络应用可能支持固定数据的并发下载。这些连接就可以使用semaphore来进行管理。

import threading
import time

class HtmlSpider(threading.Thread):
    def __init__(self,url):
        super().__init__()
        self.url = url

    def run(self):
        time.sleep(2)
        print("got html text success")

class UrlProducer(threading.Thread):
    def run(self):
        for i in range(20): # 比如抓取20个网站信息
            html_thread = HtmlSpider("http://baidu.com/{}".format(i))
            html_thread.start()

if __name__ == '__main__':
    url_producer = UrlProducer()
    url_producer.start()

  我们可以看到结果是20个并发去执行的,如果我们想一次并发3个线程如何处理呢?

   更改代码如下:

import threading
import time

class HtmlSpider(threading.Thread):
    def __init__(self,url,sem):
        super().__init__()
        self.url = url
        self.sem = sem

    def run(self):
        time.sleep(2)
        print("got html text success")
        self.sem.release()

class UrlProducer(threading.Thread):
    def __init__(self,sem):
        super().__init__()
        self.sem = sem

    def run(self):
        for i in range(20): # 比如抓取20个网站信息
            self.sem.acquire()
            html_thread = HtmlSpider("http://baidu.com/{}".format(i),self.sem)
            html_thread.start()

if __name__ == '__main__':
    sem = threading.Semaphore(3)
    url_producer = UrlProducer(sem)
    url_producer.start()

 

   其实semaphore内部是调用了一个condition。我们注意semaphore也是必须有acquire方法和release方法。

  另外,我们发现Queue内部也是调用了很多condition的方法。

 

问:前面介绍了很多同步的方法,其他一些软件都有池的概念,Python也具备吗?

答:当然,Python有两个池子,一个叫线程池,一个叫进程池,后续我们讲到进程的时候回搠进程池。现在先说线程池。

  线程池就是concurrent模块包,是在Python3.2时候引入的。这个池是非常顶层的,对于我们进行线程和进程池编码是非好的。而且接口会高度的一致。

  一个问题:为什么要有线程池?

  目的很简单:就是非常容易的管理线程,线程池自己去调度新的线程去使用,线程池过大的时候会阻塞,知道最新的线程空出来。它不仅仅起到了数量控制,如果我们在主线程当中可以获取某一个线程的状态,或者某一个任务的状态,或者返回值,这样就会变得非常简单。另外,当一个线程完成的时候我们主线程就会立马知道。futures可以让多线程和多进程编码接口一直。

from concurrent.futures import ThreadPoolExecutor
import time


def get_html(times):
    time.sleep(times)
    print("get page {} success".format(times))
    return times


executor = ThreadPoolExecutor(max_workers=2)
# 通过submit函数提交执行的函数到线程池中,submit是立即返回
task1 = executor.submit(get_html,(3))
task2 = executor.submit(get_html,(2))

# done方法用于判定某个人物是否完成
print(task1.done()) # 判定我们的函数是否执行成功的
print(task2.cancel()) # 如我我们执行的状态是执行中是cancel不了的
time.sleep(3)
print(task1.done()) # 判定我们的函数是否执行成功的

# result方法可以获取task的执行结果
print(task1.result())

  运行结果:

False
False
get page 2 success
get page 3 success
True
3

 

  这里面我们用到了ThreadPoolExecutor的类,其中规定了运行的线程数量。

  done()方法:判定我们的函数是否执行成功

  result()方法:返回函数是否成功执行

  cancel()方法:取消一个线程任务(但是如果我们的任务是在执行中,是无法cancel掉的)

 

  另外,我们在想一下,我们想批量的进行提交并且知道提交是否成功怎么写。

  这个时候我们需要导入as_completed的模块,as_completed是一个生成器(我们知道生成器最好的方式就用for循环提取出来),我们再用比较高端的推导式的方式进行提交。

from concurrent.futures import ThreadPoolExecutor,as_completed
import time

def get_html(times):
    time.sleep(times)
    print("get page {} success".format(times))
    return times

executor = ThreadPoolExecutor(max_workers=2)
urls = [3,2,4]
all_task = [executor.submit(get_html,(url)) for url in urls]
for future in as_completed(all_task):
    data = future.result()  #
    print("get {} page success".format(data))

 

  另外,我们还可以通过executor本身的map方法来完成task

# 通过executor获取已经完成的task
for data in executor.map(get_html,urls):
    print("get {} page success".format(data))
    
# get page 2 success
# get page 3 success
# get 3 page success
# get 2 page success
# get page 4 success
# get 4 page success

  但是,略有有点儿差别,上面是完成一个打印一个。

 

  再加一个wait等待。这个命令其实也是非常常用而且也是非常好的模块。wait模块是等待某一个函数结束再执行下面的内容。另外wait模块有有个一传参return_when=后面有四种方式:

  FIRST_COMPLETED 当地一个执行完毕

  FIRST_EXCEPTION 

  ALL_COMPLETED

  _AS_COMPLETED

executor = ThreadPoolExecutor(max_workers=2)
urls = [3,2,4]
all_task = [executor.submit(get_html,(url)) for url in urls]
wait(all_task,return_when='FIRST_EXCEPTION')
print("main over")

 

  

  小结一下:

  * 这样关于线程池,我们知道最常用的三个模块:ThreadPoolExecutor, as_completed(注意是一个迭代器), wait。其中方法有submit,result,cancel,done等方法。wait也是可以传递参数的。

  * concurrent.futures 中的Future对象我们一般叫做未来对象,但实际上呢,更形象的说叫task返回容器,task执行结果都会放入里面。

 

问:线程的内容真是不少,功能也是不少,但是还是挺有规律的。

答:其实线程这块儿,还有几个内容,都非常简单,讲解完毕我们最线程进行总结,然后进入进程方面的讲解。

  补充1(threadLocal模块):我们发现如果两个线程同时操作一个函数的时候,会造成函数中的变量混乱的情况。我们可以通过threadLocal的方法,也叫做线程特定数据。给每一个线程单独去分配一个本地变量可以防止这个问题:代码如下。

import threading

num = 0
local = threading.local()

def run(x,n):
    x = x + n
    x = x - n

def func(n):
    local.value = num
    for i in range(1000000):
        run(local.value,n)
    print("%s--%d" %(threading.current_thread().getName(),local.value))

if __name__ == '__main__':
    t1 = threading.Thread(target=func,args=(6,))
    t2 = threading.Thread(target=func,args=(9,))

    t1.start()
    t2.start()
    t1.join()
    t2.join()
    # 
    # Thread - 1 - -0
    # Thread - 2 - -0

 

  

  补充2(barrier模块):这个单词是障碍的意思,也就是说像是一个“班车”凑够了多少个“人”才发车。这里就是凑够了多少个线程再进行线程计算,不过这个方法有一个维内托,如果数量不够时候,会一直停在那里等待线程。这种方法平时用的也不是很多。它的方法也是wait,代码如下:

import threading,time

bar = threading.Barrier(4)

def run():
    print("{} -- start".format(threading.current_thread().getName()))
    time.sleep(1)
    bar.wait()
    print("{} -- end".format(threading.current_thread().getName()))

if __name__ == '__main__':
    for i in range(6):
        threading.Thread(target=run).start()

   我们发现:分配6个线程,其实给的是4个,线程6个并发了之后,等待2个结束并发,一直等不到,就停在那里了

 

  补充3(Timer模块):这个模块很好理解,就是控制线程并发的事件,这是一个定时器,这个定时的事件结束的时候再去开启。

import threading


def run():
    print("Thomas is running")

t = threading.Timer(5,run)

print("父线程开始......")
t.start()
t.join()
print("父线程结束......")

 

  

  补充4(Event模块):这个模块非常简单,我们使用手工的方式进行线程之间上锁解锁的方式进行通讯,我们可以调用线程的事件(因为线程行动本身就是一个事件),让上一个线程事件等待时间触发。和Condition模块非常的类似。

import threading,time


def func():
    event = threading.Event()
    def run():
        for i in range(5):
            event.wait()
            event.clear()
            print("Thomas is running")
    threading.Thread(target=run).start()

    return event

e = func()
for i in range(5):
    e.set()
    time.sleep(2)

  分析代码我们可以看出.wait是阻塞等待时间的触发。clear是重置的意思。set是设定的内容。

 

  补充5(enumerate模块):略

 

  总结:现在我们可以对Python的进程进行一下总结了。

  第一:进程是运行程序最小的操作单元。在IO操作的时候会经常用到。

  第二:Python本身具备GIL(全局解释器锁),所以在CPython的解释下,一个线程放入一个CPU下,在诸如PyPy的Python解释器下,就是一种去GIL话的解释器。

  第三:进程在上面的框架解释下,是线程交替来进行多线程操作的,系统无法自动的调配多核。

  第四:由于线程本身设计的原因,线程在运行程序后会按照自有的规则释放空间,由于这个释放空间的时间非常短暂,造成程序和程序,数据和数据之间可能产生混乱的情况。因此我们引入了锁、event、condition等方式进行控制。

  第五:线程有一些概念是成对出现的,正是由于第四条的情况。比如守护和阻塞(daemon和join),wait和clear(event事件),wait和notify(Condition条件),done和wait等。

  第六:线程分主线程和子线程这么一说,wait这个模块其实是属于小而精的一种阻塞操作方式,另外我们还可以用with语句来简化代码,用推导式直接进行推送任务到进程中。

  第七:平时我们也常用线程池来让Python自动推送任务到线程当中,submit就是这个动作。

  第八:诸如像ThreadLocal,Event,Timer,semaphore,barrier等小技巧也需要了解。

 

posted @ 2019-06-12 16:23  时海涛|Thomas  阅读(235)  评论(0编辑  收藏  举报