[zz]LaTeX技巧207:使用align环境输入多行公式的技巧
TeX/LaTeX社区QQ群:80300084
常见数学公式问题集下载
align是输入多行公式中最好用的环境,仅仅是个人浅见,因为他的对齐非常灵活,如果大家需要非常灵巧的对齐方式的多行公式,建议使用align环境,对应的也还有align*和aligned等等类似的环境,这里不再详述。下文提供代码,尽展其风姿绰约。
演示效果图:
演示代码:
\documentclass{article} \pagestyle{empty} \setcounter{page}{6} \setlength\textwidth{266.0pt} \usepackage{CJK} \usepackage{amsmath} \begin{CJK}{GBK}{song} \begin{document} \begin{align} (a + b)^3 &= (a + b) (a + b)^2 \\ &= (a + b)(a^2 + 2ab + b^2) \\ &= a^3 + 3a^2b + 3ab^2 + b^3 \end{align} \begin{align} x^2 + y^2 & = 1 \\ x & = \sqrt{1-y^2} \end{align} This example has two column-pairs. \begin{align} \text{Compare } x^2 + y^2 &= 1 & x^3 + y^3 &= 1 \\ x &= \sqrt {1-y^2} & x &= \sqrt[3]{1-y^3} \end{align} This example has three column-pairs. \begin{align} x &= y & X &= Y & a &= b+c \\ x' &= y' & X' &= Y' & a' &= b \\ x + x' &= y + y' & X + X' &= Y + Y' & a'b &= c'b \end{align} This example has two column-pairs. \begin{flalign} \text{Compare } x^2 + y^2 &= 1 & x^3 + y^3 &= 1 \\ x &= \sqrt {1-y^2} & x &= \sqrt[3]{1-y^3} \end{flalign} This example has three column-pairs. \begin{flalign} x &= y & X &= Y & a &= b+c \\ x' &= y' & X' &= Y' & a' &= b \\ x + x' &= y + y' & X + X' &= Y + Y' & a'b &= c'b \end{flalign} This example has two column-pairs. \renewcommand\minalignsep{0pt} \begin{align} \text{Compare } x^2 + y^2 &= 1 & x^3 + y^3 &= 1 \\ x &= \sqrt {1-y^2} & x &= \sqrt[3]{1-y^3} \end{align} This example has three column-pairs. \renewcommand\minalignsep{15pt} \begin{flalign} x &= y & X &= Y & a &= b+c \\ x' &= y' & X' &= Y' & a' &= b \\ x + x' &= y + y' & X + X' &= Y + Y' & a'b &= c'b \end{flalign} \renewcommand\minalignsep{2em} \begin{align} x &= y && \text{by hypothesis} \\ x' &= y' && \text{by definition} \\ x + x' &= y + y' && \text{by Axiom 1} \end{align} \begin{equation} \begin{aligned} x^2 + y^2 &= 1 \\ x &= \sqrt{1-y^2} \\ \text{and also }y &= \sqrt{1-x^2} \end{aligned} \qquad \begin{gathered} (a + b)^2 = a^2 + 2ab + b^2 \\ (a + b) \cdot (a - b) = a^2 - b^2 \end{gathered} \end{equation} \begin{equation} \begin{aligned}[b] x^2 + y^2 &= 1 \\ x &= \sqrt{1-y^2} \\ \text{and also }y &= \sqrt{1-x^2} \end{aligned} \qquad \begin{gathered}[t] (a + b)^2 = a^2 + 2ab + b^2 \\ (a + b) \cdot (a - b) = a^2 - b^2 \end{gathered} \end{equation} \newenvironment{rcase} {\left.\begin{aligned}} {\end{aligned}\right\rbrace} \begin{equation*} \begin{rcase} B' &= -\partial\times E \\ E' &= \partial\times B - 4\pi j \, \end{rcase} \quad \text {Maxwell's equations} \end{equation*} \begin{equation} \begin{aligned} V_j &= v_j & X_i &= x_i - q_i x_j & &= u_j + \sum_{i\ne j} q_i \\ V_i &= v_i - q_i v_j & X_j &= x_j & U_i &= u_i \end{aligned} \end{equation} \begin{align} A_1 &= N_0 (\lambda ; \Omega') - \phi ( \lambda ; \Omega') \\ A_2 &= \phi (\lambda ; \Omega') \phi (\lambda ; \Omega) \\ \intertext{and finally} A_3 &= \mathcal{N} (\lambda ; \omega) \end{align} \end{CJK} \end{document}