数组中的逆序对 --剑指offer
题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
归并排序的改进 在合并的时候进行计算count的值
先贴上归并排序的代码
public class Solution { public static void mergeSort(int [] array) { int[] temp=new int[array.length]; sort(array,temp,0,array.length-1); } public static void sort(int[] arr,int[] temp,int left,int right){ if(left == right){ return; } int mid = (left+right)/2; sort(arr,temp,left,mid); sort(arr,temp,mid+1,right); int t=0; int i=left,j=mid+1; while (i <= mid && j<=right) { if(arr[i]<arr[j]){ temp[t ++] = arr[i++]; } else { temp[t ++] = arr[j++]; } } while (i <= mid){ temp[t ++] = arr[i++]; } while (j <= right){ temp[t ++] = arr[j++]; } t=0; for(i =left;i <= right;i ++){ arr[i] = temp[t++]; } } }
本题的代码:
public class Solution { public int InversePairs(int [] array) { if(array == null || array.length == 0 ){ return 0; } int[] temp=new int[array.length]; return (sort(array,temp,0,array.length-1))%1000000007; } public int sort(int[] arr,int[] temp,int left,int right){ if(left == right){ return 0; } int mid = (left+right)/2; int leftcount=sort(arr,temp,left,mid)%1000000007; int rightcount=sort(arr,temp,mid+1,right)%1000000007; //归并部分 int i=mid,j=right; int count=0; int t=right; while (i >= left && j>=mid+1) { if(arr[i]>arr[j]){ temp[t--] = arr[i--]; count += j-mid; if(count > 1000000007){ count = count%1000000007; } } else { temp[t--]=arr[j--]; } } while (i >= left){ temp[t --] = arr[i--]; } while (j >= mid+1){ temp[t --] = arr[j--]; } for(i =left;i <= right;i ++){ arr[i] = temp[i]; } return (leftcount +rightcount + count)%1000000007; } }