nkh

先验概率,后验概率,最大似然估计,最大后验概率

先验概率和后验概率

教科书上的解释总是太绕了。其实举个例子大家就明白这两个东西了。

假设我们出门堵车的可能因素有两个(就是假设而已,别当真):车辆太多和交通事故。

堵车的概率就是先验概率 

那么如果我们出门之前我们听到新闻说今天路上出了个交通事故,那么我们想算一下堵车的概率,这个就叫做条件概率 。也就是P(堵车|交通事故)。这是有因求果。

如果我们已经出了门,然后遇到了堵车,那么我们想算一下堵车时由交通事故引起的概率有多大,

那这个就叫做后验概率 (也是条件概率,但是通常习惯这么说) 。也就是P(交通事故|堵车)。这是有果求因。

 

下面的定义摘自百度百科:

先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现.

后验概率是指依据得到"结果"信息所计算出的最有可能是那种事件发生,如贝叶斯公式中的,是"执果寻因"问题中的"因".

 

那么这两个概念有什么用呢?

 

最大似然估计

我们来看一个例子。

有一天,有个病人到医院看病。他告诉医生说自己头痛,然后医生根据自己的经验判断出他是感冒了,然后给他开了些药回去吃。

 

有人肯定要问了,这个例子看起来跟我们要讲的最大似然估计有啥关系啊。

关系可大了,事实上医生在不知不觉中就用到了最大似然估计(虽然有点牵强,但大家就勉为其难地接受吧^_^)。

 

怎么说呢?

大家知道,头痛的原因有很多种啊,比如感冒,中风,脑溢血...(脑残>_<这个我可不知道会不会头痛,还有那些看到难题就头痛的病人也不在讨论范围啊!)。

那么医生凭什么说那个病人就是感冒呢?哦,医生说这是我从医多年的经验啊。

 

咱们从概率的角度来研究一下这个问题。

其实医生的大脑是这么工作的,

他计算了一下

P(感冒|头痛)(头痛由感冒引起的概率,下面类似)

P(中风|头痛)

P(脑溢血|头痛)

...

然后这个计算机大脑发现,P(感冒|头痛)是最大的,因此就认为呢,病人是感冒了。看到了吗?这个就叫最大似然估计(Maximum likelihood estimation,MLE) 。

咱们再思考一下,P(感冒|头痛),P(中风|头痛),P(脑溢血|头痛)是先验概率还是后验概率呢?

没错,就是后验概率。看到了吧,后验概率可以用来看病(只要你算得出来,呵呵)。

 

事实上,后验概率起了这样一个用途,根据一些发生的事实(通常是坏的结果),分析结果产生的最可能的原因,然后才能有针对性地去解决问题。

 

那么先验概率有啥用呢?

我们来思考一下,P(脑残|头痛)是怎么算的。

 

P(脑残|头痛)=头痛的人中脑残的人数/头痛的人数

 

头痛的样本倒好找,但是头痛的人中脑残的人数就不好调查了吧。如果你去问一个头痛的人你是不是脑残了,我估计那人会把你拍飞吧。

 

接下来先验概率就派上用场了。

 

根据贝叶斯公式 ,

P(B|A)=P(A|B)P(B)/P(A)

 

我们可以知道

 

P(脑残|头痛)=P(头痛|脑残)P(脑残)/P(头痛)

 

注意,(头痛|脑残)是先验概率,那么利用贝叶斯公式我们就可以利用先验概率把后验概率算出来了。

 

P(头痛|脑残)=脑残的人中头痛的人数/脑残的人数

 

这样只需要我们去问脑残的人你头痛吗,明显很安全了。

(你说脑残的人数怎么来的啊,那我们就假设我们手上有一份传说中的脑残名单吧。那份同学不要吵,我没说你在名单上啊。

再说调查脑残人数的话咱就没必要抓着一个头痛的人问了。起码问一个心情好的人是否脑残比问一个头痛的人安全得多)

 

我承认上面的例子很牵强,不过主要是为了表达一个意思。后验概率在实际中一般是很难直接计算出来的,相反先验概率就容易多了。因此一般会利用先验概率来计算后验概率。

似然函数与最大似然估计

下面给出似然函数跟最大似然估计的定义。

 

我们假设f是一个概率密度函数,那么

x/mapsto f(x/mid/theta), /!

是一个条件概率密度函数(θ 是固定的)

 

而反过来,

/theta/mapsto f(x/mid/theta), /!

叫做似然函数 (x是固定的)。

 

一般把似然函数写成

L(/theta /mid x)=f(x/mid/theta), /!

θ是因变量。

 

最大似然估计 就是求在θ的定义域中,当似然函数取得最大值时θ的大小。

意思就是呢,当后验概率最大时θ的大小。也就是说要求最有可能的原因。

由于对数函数不会改变大小关系,有时候会将似然函数求一下对数,方便计算。

 

例子:

我们假设有三种硬币,他们扔到正面的概率分别是1/3,1/2,2/3。我们手上有一个硬币,但是我们并不知道这是哪一种。因此我们做了一下实验,我们扔了80次,有49次正面,31次背面。那么这个硬币最可能是哪种呢?我们动手来算一下。这里θ的定义域是{1/3,1/2,2/3}

/begin{align}/Pr(/mathrm{H} = 49 /mid p=1/3) & = /binom{80}{49}(1/3)^{49}(1-1/3)^{31} /approx 0.000 //[6pt]/Pr(/mathrm{H} = 49 /mid p=1/2) & = /binom{80}{49}(1/2)^{49}(1-1/2)^{31} /approx 0.012 //[6pt]/Pr(/mathrm{H} = 49 /mid p=2/3) & = /binom{80}{49}(2/3)^{49}(1-2/3)^{31} /approx 0.054./end{align}

当p=2/3时,似然函数的值最大,因此呢,这个硬币很可能是2/3。

 

最大后验概率:

最大后验估计运用了贝叶斯估计的思想,但是它并不去求解p(\theta|\mathcal{D}),而是直接获得\theta_{B}^{*}。从贝叶斯估计的公式可以看出,Z_D是与\theta无关的,要求得使p(\theta|\mathcal{D})最的的\theta,等价于求解下面的式子:

\theta_{MAP}^{*}={argmax}_{\theta}\{ p(\theta|x)\}=argmax_{\theta}\{p(x|\theta)p(\theta)\}

与最大似然估计中一样,我们通常最大化对应的对数形式:

\theta_{MAP}^{*}=argmax_{\theta}\{\log{p(x|\theta)}+\log{p(\theta)}\}

这样,我们便无需去计算Z_{\mathcal{D}},也不需要求得具体的p(\theta|\mathcal{D})部分,便可以得到想要的\theta_{MAP}^{*}

总结一下:三种方法各有千秋,使用于不同的场合。当对先验概率p(\theta)的估计没有信心,可以使用最大似然估计(当然也可以使用其它两种)。贝叶斯估计得到了后验概率的分布,最大似然估计适用于只需要知道使后验概率最大的那个\theta

 

更详细:

http://blog.csdn.net/u011508640/article/details/72815981

 

posted on 2018-01-24 15:16  nkh  阅读(1446)  评论(0编辑  收藏  举报

导航