python中的各种模块(np,os,shutill)
PS:本博文摘抄自中国慕课大学上的课程《Python数据分析与展示》,推荐刚入门的同学去学习,这是非常好的入门视频。
#np模块
.ndim :维度
.shape :各维度的尺度 (2,5)
.size :元素的个数 10
.dtype :元素的类型 dtype(‘int32’)
.itemsize :每个元素的大小,以字节为单位 ,每个元素占4个字节
ndarray数组的创建
np.arange(n) ; 元素从0到n-1的ndarray类型
np.ones(shape): 生成全1
np.zeros((shape), ddtype = np.int32) : 生成int32型的全0
np.full(shape, val): 生成全为val
np.eye(n) : 生成单位矩阵
np.ones_like(a) : 按数组a的形状生成全1的数组
np.zeros_like(a): 同理
np.full_like (a, val) : 同理
np.linspace(1,10,4): 根据起止数据等间距地生成数组
np.linspace(1,10,4, endpoint = False):endpoint 表示10是否作为生成的元素
np.concatenate():多个数组的拼接
- 数组的维度变换
.reshape(shape) : 不改变当前数组,依shape生成
.resize(shape) : 改变当前数组,依shape生成
.swapaxes(ax1, ax2) : 将两个维度调换
.flatten() : 对数组进行降维,返回折叠后的一位数组
- 数组的类型变换
数据类型的转换 :a.astype(new_type) : eg, a.astype (np.float)
数组向列表的转换: a.tolist()
数组的索引和切片
- 一维数组切片
a = np.array ([9, 8, 7, 6, 5, ])
a[1:4:2] –> array([8, 6]) : a[起始编号:终止编号(不含): 步长]
- 多维数组索引
a = np.arange(24).reshape((2, 3, 4))
a[1, 2, 3] 表示 3个维度上的编号, 各个维度的编号用逗号分隔
- 多维数组切片
a [:,:,::2 ] 缺省时,表示从第0个元素开始,到最后一个元素
数组的运算
np.abs(a) np.fabs(a) : 取各元素的绝对值
np.sqrt(a) : 计算各元素的平方根
np.square(a): 计算各元素的平方
np.log(a) np.log10(a) np.log2(a) : 计算各元素的自然对数、10、2为底的对数
np.ceil(a) np.floor(a) : 计算各元素的ceiling 值, floor值(ceiling向上取整,floor向下取整)
np.rint(a) : 各元素 四舍五入
np.modf(a) : 将数组各元素的小数和整数部分以两个独立数组形式返回
np.exp(a) : 计算各元素的指数值
np.sign(a) : 计算各元素的符号值 1(+),0,-1(-)
.
np.maximum(a, b) np.fmax() : 比较(或者计算)元素级的最大值
np.minimum(a, b) np.fmin() : 取最小值
np.mod(a, b) : 元素级的模运算
np.copysign(a, b) : 将b中各元素的符号赋值给数组a的对应元素
- 数据的CSV文件存取
CSV (Comma-Separated Value,逗号分隔值) 只能存储一维和二维数组
np.savetxt(frame, array, fmt=’% .18e’, delimiter = None):
frame是文件、字符串等,可以是.gz .bz2的压缩文件; array 表示存入的数组; fmt 表示元素的格式 eg: %d % .2f %
.18e ; delimiter: 分割字符串,默认是空格
eg: np.savetxt(‘a.csv’, a, fmt=%d, delimiter = ‘,’ )
np.loadtxt(frame, dtype=np.float, delimiter = None, unpack = False) :
frame是文件、字符串等,可以是.gz .bz2的压缩文件; dtype:数据类型,读取的数据以此类型存储; delimiter:
分割字符串,默认是空格; unpack: 如果为True, 读入属性将分别写入不同变量。
多维数据的存取
a.tofile(frame, sep=’’, format=’%s’ ) : frame: 文件、字符串; sep: 数据分割字符串,如果是空串,写入文件为二进制 ; format:: 写入数据的格式
eg: a = np.arange(100).reshape(5, 10, 2)
a.tofile(“b.dat”, sep=”,”, format=’%d’)
np.fromfile(frame, dtype = float, count=-1, sep=’’): frame: 文件、字符串 ; dtype: 读取的数据以此类型存储; count:读入元素个数, -1表示读入整个文件; sep: 数据分割字符串,如果是空串,写入文件为二进制
PS: a.tofile() 和np.fromfile()要配合使用,要知道数据的类型和维度。
np.save(frame, array) : frame: 文件名,以.npy为扩展名,压缩扩展名为.npz ; array为数组变量
np.load(fname) : frame: 文件名,以.npy为扩展名,压缩扩展名为
np.save() 和np.load() 使用时,不用自己考虑数据类型和维度。
- numpy随机数函数
numpy 的random子库
rand(d0, d1, …,dn) : 各元素是[0, 1)的浮点数,服从均匀分布
randn(d0, d1, …,dn):标准正态分布
randint(low, high,( shape)): 依shape创建随机整数或整数数组,范围是[ low, high)
seed(s) : 随机数种子
shuffle(a) : 根据数组a的第一轴进行随机排列,改变数组a
permutation(a) : 根据数组a的第一轴进行随机排列, 但是不改变原数组,将生成新数组
choice(a[, size, replace, p]) : 从一维数组a中以概率p抽取元素, 形成size形状新数组,replace表示是否可以重用元素,默认为False。
eg:
replace = False时,选取过的元素将不会再选取
uniform(low, high, size) : 产生均匀分布的数组,起始值为low,high为结束值,size为形状
normal(loc, scale, size) : 产生正态分布的数组, loc为均值,scale为标准差,size为形状
poisson(lam, size) : 产生泊松分布的数组, lam随机事件发生概率,size为形状
eg: a = np.random.uniform(0, 10, (3, 4)) a = np.random.normal(10, 5, (3, 4))
- numpy的统计函数
sum(a, axis = None) : 依给定轴axis计算数组a相关元素之和,axis为整数或者元组
mean(a, axis = None) : 同理,计算平均值
average(a, axis =None, weights=None) : 依给定轴axis计算数组a相关元素的加权平均值
std(a, axis = None) :同理,计算标准差
var(a, axis = None): 计算方差
eg: np.mean(a, axis =1) : 对数组a的第二维度的数据进行求平均
a = np.arange(15).reshape(3, 5)
np.average(a, axis =0, weights =[10, 5, 1]) : 对a第一各维度加权求平均,weights中为权重,注意要和a的第一维匹配
min(a) max(a) : 计算数组a的最小值和最大值
argmin(a) argmax(a) : 计算数组a的最小、最大值的下标(注:是一维的下标)
unravel_index(index, shape) : 根据shape将一维下标index转成多维下标
ptp(a) : 计算数组a最大值和最小值的差
median(a) : 计算数组a中元素的中位数(中值)
eg:a = [[15, 14, 13],
[12, 11, 10] ]
np.argmax(a) –> 0
np.unravel_index( np.argmax(a), a.shape) –> (0,0)
- numpy的梯度函数
np.gradient(a) : 计算数组a中元素的梯度,f为多维时,返回每个维度的梯度
离散梯度: xy坐标轴连续三个x轴坐标对应的y轴值:a, b, c 其中b的梯度是(c-a)/2
而c的梯度是: (c-b)/1
当为二维数组时,np.gradient(a) 得出两个数组,第一个数组对应最外层维度的梯度,第二个数组对应第二层维度的梯度。
- 图像的表示和变换
PIL, python image library 库
from PIL import Image
Image是PIL库中代表一个图像的类(对象)
im = np.array(Image.open(“.jpg”))
im = Image.fromarray(b.astype(‘uint8’)) # 生成
im.save(“路径.jpg”) # 保存
im = np.array(Image.open(“.jpg”).convert(‘L’)) # convert(‘L’)表示转为灰度图
补充:np.where:
返回符合某一条件的下标的函数,不过np.where()
并不接受list
类型的参数,可见np.where()
既可以接收三个参数,用于三目运算,也可接收一个参数,返回符合条件的下标。
>>a = np.array(a)
>>a
array([1, 2, 3, 1, 2, 3, 1, 2, 3])
>>idx = np.where(a > 2)
>>idx
(array([2, 5, 8], dtype=int32),)
>>a[idx] # 这种做法并不推荐
array([3, 3, 3])
>>a[a>2] # 推荐的做法
array([3, 3, 3])
注意,这种情况下,也即 np.where() 用于返回断言成立时的索引,返回值的形式为 arrays of tuple,由 np.array 构成的 tuple,一般 tuple 的 len 为2(当判断的对象是多维数组时),哪怕是一维数组返回的仍是 tuple,此时tuple 的 len 为 1;
- np.where()[0] 表示行的索引,
- np.where()[1] 则表示列的索引
np.where()
用于三目运算的情况:
>>y = np.array([1, 2, 3, 4, 5, 6]) # 将奇数转换为偶数,偶数转换为奇数
>>y = np.where(y%2 == 0, y+1, y-1) #当符合条件y%2==0时是y+1,不符合是y-1,常用于根据一个数组产生另一个新的数组。
>>y
array([0, 3, 2, 5, 4, 7])
# os 模块
os.sep 可以取代操作系统特定的路径分隔符。windows下为 '\\'
os.name 字符串指示你正在使用的平台。比如对于Windows,它是'nt',而对于Linux/Unix用户,它是 'posix'
os.getcwd() 函数得到当前工作目录,即当前Python脚本工作的目录路径
os.getenv() 获取一个环境变量,如果没有返回none
os.putenv(key, value) 设置一个环境变量值
os.listdir(path) 返回指定目录下的所有文件和目录名
os.remove(path) 函数用来删除一个文件
os.system(command) 函数用来运行shell命令
os.linesep 字符串给出当前平台使用的行终止符。例如,Windows使用 '\r\n',Linux使用 '\n' 而Mac使用 '\r'
os.path.split(path) 函数返回一个路径的目录名和文件名
os.path.isfile() 和os.path.isdir()函数分别检验给出的路径是一个文件还是目录
os.path.exists() 函数用来检验给出的路径是否真地存在
os.curdir 返回当前目录 ('.')
os.mkdir(path) 创建一个目录
os.makedirs(path) 递归的创建目录
os.chdir(dirname) 改变工作目录到dirname
os.path.getsize(name) 获得文件大小,如果name是目录返回0L
os.path.abspath(name) 获得绝对路径
os.path.normpath(path) 规范path字符串形式
os.path.splitext() 分离文件名与扩展名
os.path.join(path,name) 连接目录与文件名或目录
os.path.basename(path) 返回文件名
os.path.dirname(path) 返回文件路径
os.walk(top,topdown=True,onerror=None) 遍历迭代目录
os.rename(src,
dst) 重命名file或者directory src到dst 如果dst是一个存在的directory, 将抛出OSError.
在Unix, 如果dst在存且是一个file, 如果用户有权限的话,它将被安静的替换. 操作将会失败在某些Unix
中如果src和dst在不同的文件系统中. 如果成功, 这命名操作将会是一个原子操作 (这是POSIX 需要). 在 Windows上,
如果dst已经存在, 将抛出OSError,即使它是一个文件. 在unix,Windows中有效。
os.renames(old, new) 递归重命名文件夹或者文件。像rename()
# shutil 模块
shutil.copyfile( src, dst) 从源src复制到dst中去。当然前提是目标地址是具备可写权限。抛出的异常信息为IOException. 如果当前的dst已存在的话就会被覆盖掉
shutil.move( src, dst) 移动文件或重命名
shutil.copymode( src, dst) 只是会复制其权限其他的东西是不会被复制的
shutil.copystat( src, dst) 复制权限、最后访问时间、最后修改时间
shutil.copy( src, dst) 复制一个文件到一个文件或一个目录
shutil.copy2( src, dst) 在copy上的基础上再复制文件最后访问时间与修改时间也复制过来了,类似于cp –p的东西
shutil.copy2( src, dst) 如果两个位置的文件系统是一样的话相当于是rename操作,只是改名;如果是不在相同的文件系统的话就是做move操作
shutil.copytree( olddir, newdir, True/Flase)
把olddir拷贝一份newdir,如果第3个参数是True,则复制目录时将保持文件夹下的符号连接,如果第3个参数是False,则将在复制的目录下生成物理副本来替代符号连接
shutil.rmtree( src ) 递归删除一个目录以及目录内的所有内容