HDU 4609 3idiots
第一道FFT,研究了kuangbin神的版子,发现想不太通,不过基本的意思都懂了,就是用一个数组的权和另一个数组的权求和,计算个数。题目中有不少坑点。
#include <cstdio> #include <cstring> #include <vector> #include <cmath> #include <stack> #include <cstdlib> #include <queue> #include <map> #include <iostream> #include <algorithm> #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); struct Complex { double r,i; Complex(double _r = 0,double _i = 0) { r = _r; i = _i; } Complex operator +(const Complex &b) { return Complex(r+b.r,i+b.i); } Complex operator -(const Complex &b) { return Complex(r-b.r,i-b.i); } Complex operator *(const Complex &b) { return Complex(r*b.r-i*b.i,r*b.i+i*b.r); } }; void change(Complex y[],int len) { int i,j,k; for(i = 1, j = len/2;i < len-1;i++) { if(i < j)swap(y[i],y[j]); k = len/2; while( j >= k) { j -= k; k /= 2; } if(j < k)j += k; } } void fft(Complex y[],int len,int on) { change(y,len); for(int h = 2;h <= len;h <<= 1) { Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h)); for(int j = 0;j < len;j += h) { Complex w(1,0); for(int k = j;k < j+h/2;k++) { Complex u = y[k]; Complex t = w*y[k+h/2]; y[k] = u+t; y[k+h/2] = u-t; w = w*wn; } } } if(on == -1) for(int i = 0;i < len;i++) y[i].r /= len; } const int MAXN=400040; int a[MAXN]; Complex x1[MAXN]; long long num[MAXN]; long long sum[MAXN]; int main() { int T,n; scanf ("%d",&T); while (T--) { memset(num,0,sizeof(num)); scanf ("%d",&n); for (int i=0;i<n;i++) { scanf ("%d",&a[i]); num[a[i]]++; } sort(a,a+n); int len1=a[n-1]+1; int len=1; while (len<len1*2) len*=2; for (int i=0;i<len1;i++) { x1[i]=Complex(num[i],0); } for (int i=len1;i<len;i++) { x1[i]=Complex(0,0); } fft(x1,len,1); for (int i=0;i<len;i++) { x1[i]=x1[i]*x1[i]; } fft(x1,len,-1); for (int i=0;i<len;i++) { num[i]=(long long)(x1[i].r+0.5); } len=2*a[n-1]; for (int i=0;i<n;i++) { num[a[i]+a[i]]--; } for (int i=1;i<=len;i++) { num[i]/=2; } sum[0]=0; for (int i=1;i<=len;i++) { sum[i]=sum[i-1]+num[i]; } long long ans=0; for (int i=0;i<n;i++) { ans+=sum[len]-sum[a[i]]; ans-=(long long)(n-1-i)*i; ans-=(n-1); ans-=(long long)(n-i-1)*(n-i-2)/2; } long long mu=(long long)n*(n-1)*(n-2)/6; printf ("%.7f\n",(double)ans/mu); } return 0; }