leetcode 743 网络延迟时间 Dijkstra算法

  JAVA 暴力解法:

复制代码
    public final int networkDelayTime(int[][] times, int n, int k) {
        Map<Integer, List<Integer[]>> map = new HashMap<Integer, List<Integer[]>>();
        for (int[] loads : times) {
            if (!map.containsKey(loads[0])) map.put(loads[0], new LinkedList<Integer[]>());
            map.get(loads[0]).add(new Integer[]{loads[1], loads[2]});
        }
        int re = -1;
        for (int i = 1; i <= n; i++) {
            if (i == k) continue;
            int curr = dfs(k, i, map, new HashSet<Integer>());
            if (curr == -1) return -1;
            re = Math.max(re, curr);
        }
        return re;
    }

    private final int dfs(int begin, int end, Map<Integer, List<Integer[]>> map, Set<Integer> loads) {
        if (begin == end) return 0;
        if (loads.contains(begin) || !map.containsKey(begin)) return -1;
        loads.add(begin);
        List<Integer[]> shortest = map.get(begin);
        int re = Integer.MAX_VALUE;
        for (Integer[] arr : shortest) {
            int curr = dfs(arr[0], end, map, loads);
            if (curr != -1) re = Math.min(re, curr + arr[1]);
        }
        loads.remove(begin);
        if (re == Integer.MAX_VALUE) re = -1;
        return re;
    }
复制代码

  JAVA 暴力解法由自底向上转为自顶向下,方便剪枝:

复制代码
    public final int networkDelayTime(int[][] times, int n, int k) {
        Map<Integer, List<Integer[]>> map = new HashMap<Integer, List<Integer[]>>();
        for (int[] time : times) {
            if (!map.containsKey(time[0])) map.put(time[0], new LinkedList<Integer[]>());
            map.get(time[0]).add(new Integer[]{time[1], time[2]});
        }
        int len = n + 1, re = -1;
        int[] reArr = new int[len];
        for (int i = 1; i < len; i++) reArr[i] = Integer.MAX_VALUE;
        search(reArr, map, k, 0);
        for (int i = 1; i < len; i++) {
            if (reArr[i] == Integer.MAX_VALUE) return -1;
            re = Math.max(re, reArr[i]);
        }
        return re;
    }

    private final void search(int[] reArr, Map<Integer, List<Integer[]>> map, int begin, int time) {
        if (time >= reArr[begin]) return;
        reArr[begin] = time;
        if (!map.containsKey(begin)) return;
        for (Integer[] next : map.get(begin)) search(reArr, map, next[0], time + next[1]);
    }
复制代码

  在选择下一步的走法时,如果面临对所有可能性遍历的情况,就应该从缩小遍历集合的角度去优化这一步骤,贪心思维是非常好的思考角度。

  JAVA 贪心解法(Dijkstra算法 ):

复制代码
public final int networkDelayTime(int[][] times, int n, int k) {
        Map<Integer, List<Integer[]>> map = new HashMap<Integer, List<Integer[]>>();
        for (int[] time : times) {
            if (!map.containsKey(time[0])) map.put(time[0], new LinkedList<Integer[]>());
            map.get(time[0]).add(new Integer[]{time[1], time[2]});
        }
        int len = n + 1, re = -1;
        boolean[] isShortest = new boolean[len];
        int[] reArr = new int[len];
        for (int i = 1; i < len; i++) reArr[i] = Integer.MAX_VALUE;
        reArr[k] = 0;
        while (true) {
            int canNode = -1, shrotest = Integer.MAX_VALUE;
            for (int i = 1; i < len; i++) {
                if (!isShortest[i] && reArr[i] < shrotest) {
                    shrotest = reArr[i];
                    canNode = i;
                }
            }
            if (canNode == -1) break;
            isShortest[canNode] = true;
            if (map.containsKey(canNode))
                for (Integer[] load : map.get(canNode)) reArr[load[0]] = Math.min(reArr[load[0]], shrotest + load[1]);
        }
        for (int i = 1; i < len; i++) {
            if (reArr[i] == Integer.MAX_VALUE) return -1;
            re = Math.max(re, reArr[i]);
        }
        return re;
    }
复制代码

  JS 贪心解法(Dijkstra算法):

复制代码
var networkDelayTime = function (times, n, k) {
    let map = new Map(), len = n + 1, shortest = new Array(len), re = -1, isShortest = new Array(len);
    for (let i = 0; i < times.length; i++) {
        if (!map.has(times[i][0])) map.set(times[i][0], []);
        map.get(times[i][0]).push([times[i][1], times[i][2]]);
    }
    for (let i = 1; i < len; i++) shortest[i] = Number.MAX_VALUE;
    for (let i = 1; i < len; i++) isShortest[i] = false;
    shortest[k] = 0;
    while (true) {
        let currNode = -1, currShortest = Number.MAX_VALUE;
        for (let i = 0; i < len; i++) {
            if (!isShortest[i] && currShortest > shortest[i]) {
                currShortest = shortest[i];
                currNode = i;
            }
        }
        if (currNode === -1) break;
        isShortest[currNode] = true;
        let currNextArr = map.get(currNode);
        if (!currNextArr) continue;
        for (let i = 0; i < currNextArr.length; i++) shortest[currNextArr[i][0]] = Math.min(shortest[currNextArr[i][0]], currShortest + currNextArr[i][1]);
    }
    for (let i = 1; i < len; i++) {
        if (shortest[i] == Number.MAX_VALUE) return -1;
        re = Math.max(re, shortest[i]);
    }
    return re;
};
复制代码

  最终解法效果:

 

posted @   牛有肉  阅读(159)  评论(0编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示