Leetcode 300 最长上升子序列
分治解法:
public final int lengthOfLIS(int[] nums) { int[] cache = new int[nums.length]; int re = 0; for (int i = 0; i < nums.length; i++) { re = Math.max(re, lengthOfLIS(nums, i, cache)); } return re; } /** * @Author Niuxy * @Date 2020/7/6 11:15 下午 * @Description 暴力法需要遍历以每个元素为头元素的最长数组的长度 * 问题间存在递归关系,且存在大量重复计算 * G(i) 为以第 i 个元素为头元素的最长递增数组的长度 */ public final int lengthOfLIS(int[] nums, int begin, int[] cache) { if (begin == nums.length - 1) { return 1; } if (cache[begin] != 0) { return cache[begin]; } int maxLength = 1; for (int i = begin + 1; i < nums.length; i++) { if (nums[i] <= nums[begin]) { continue; } maxLength = Math.max(maxLength, lengthOfLIS(nums, i, cache) + 1); } cache[begin] = maxLength; return maxLength; }
DP 解法,即分治转为递推表示:
public final int lengthOfLISDP(int[] nums) { if (nums == null || nums.length == 0) { return 0; } int re = 1; int[] cache = new int[nums.length]; cache[nums.length - 1] = 1; for (int i = nums.length - 2; i >= 0; i--) { cache[i] = 1; for (int j = i + 1; j < nums.length; j++) { if (nums[j] <= nums[i]) { continue; } cache[i] = Math.max(cache[i], cache[j] + 1); } re = Math.max(cache[i], re); } return re; }
当你看清人们的真相,于是你知道了,你可以忍受孤独
分类:
数据结构与算法
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构