leetcode55 jumpGame贪心算法
上题目:
解空间明确,一个从 nums[0] 开始辐射出去的树状解空间。首先暴力搜索一下,暴力搜索解法:
public final boolean canJump(int[] nums) { if(nums==null){return false;} int length=nums.length; return jump(nums,length,0); } public final boolean jump(int[] nums,int length,int current){ if(current==length-1){ return true; } if(current>length-1){ return false; } boolean re=false; int currentSteps=nums[current]; for(int i=1;i<=currentSteps;i++){ re=re||jump(nums,length,current+i); } return re; }
解的过程中我们发现,回归过程是自底向上的,在回归的过程中,有大量的节点出现了重复计算,可考虑缓存避免重复计算。缓存搜索:
public final boolean canJump(int[] nums) { if(nums==null){return false;} int length=nums.length; int[] cache=new int[length]; return jump(nums,length,0,cache); } public final boolean jump(int[] nums,int length,int current,int[] cache){ if(current==length-1||cache[current]==1){return true;} if(current>length-1||cache[current]==-1){return false;} boolean re=false; int currentSteps=nums[current]; for(int i=1;i<=currentSteps;i++){ if(jump(nums,length,current+i,cache)){ re=true; break; } } cache[current]=re?1:-1; return re; }
缓存计算定义好后,考虑避免递归带来的栈帧释放创建的开销,逆推缓存优化为动态规划解法:
public final boolean dpJump1(int[] nums) { if (nums == null) { return false; } int length = nums.length; int[] cache = new int[length]; int goodNode = 0; for (int i = length - 1; i >= 0; i--) { int currentStep = nums[i]; if (currentStep + i >= (length - 1)) { goodNode = i; cache[i] = 1; continue; } for (int j = i + currentStep; j >= i; j--) { if (cache[j] == 1) { cache[i] = 1; break; } } printNums(cache); } return cache[0] == 1 ? true : false; }
动态规划的过程中牵扯到两层 for 循环,内层的 for 循环可以使用贪心算法优化,以局部最优解获得全局最优解,我们只需要找到互动范围内最近的可到达终点的 goodNode 就可以了。贪心算法:
//贪心 public final boolean dpJump(int[] nums) { if (nums == null) { return false; } int length = nums.length; int[] cache = new int[length]; int goodNode = 0; for (int i = length - 1; i >= 0; i--) { int currentStep = nums[i]; if (currentStep + i >= (length - 1)) { goodNode = i; cache[i] = 1; continue; } if (goodNode != 0 && (i + currentStep) >= goodNode) { goodNode = i; cache[i] = 1; } printNums(cache); } return cache[0] == 1 ? true : false; }
当你看清人们的真相,于是你知道了,你可以忍受孤独