leetcode组合总和 Ⅳ 解题路径

题目:

关于动态规划类题目的思路如何找在上一篇博客 https://www.cnblogs.com/niuyourou/p/11964842.html 讲的非常清楚了,该博客也成为了了leetcode中戳气球题目点赞和阅读最多的题解(虽然题解本身就很少)。

本题的解题路径与上述博客一致,也是从 递归分治动态规划

各个解法之间的过渡不再赘述,有兴趣的朋友可以看看我的上述博客。https://www.cnblogs.com/niuyourou/p/11964842.html

这次我们只贴关键代码供各位参考:

递归搜索解法:

  /**
     * @Author Nxy
     * @Date 2019/12/21
     * @Param
     * @Return
     * @Exception
     * @Description 递归搜索
     */
    int i = 0;

    public int combinationSum4(int[] nums, int target) {
        if (nums == null) {
            return 0;
        }
        combinationSum4(nums, 0, target);
        return i;
    }

    public void combinationSum4(int[] nums, int beforeRe, int target) {
        if (beforeRe > target) {
            return;
        }
        if (beforeRe == target) {
            i++;
            return;
        }
        int length = nums.length;
        for (int i = 0; i < length; i++) {
            int tempRe = beforeRe + nums[i];
            combinationSum4(nums, tempRe, target);
        }
    }

分治解法:

状态转移方程:dp[i] = sum{ dp[i - num] for num in nums and if i >= num }

    /**
     * @Author Nxy
     * @Date 2019/12/21
     * @Param
     * @Return
     * @Exception
     * @Description 分治加缓存
     */
    public int combinationSum4II(int[] nums, int target) {
        if (nums == null) {
            return 0;
        }
        int length = nums.length;
        Map<Integer, Integer> cache = new HashMap<Integer, Integer>();
        return combinationSum4II(nums, target, length, cache);
    }

    public int combinationSum4II(int[] nums, int target, int length, Map<Integer, Integer> cache) {
        if (target < 0) {
            return 0;
        }
        if (target == 0) {
            return 1;
        }
        Set s = cache.keySet();
        if (s.contains(target)) {
            return cache.get(target);
        }
        int temp = 0;
        for (int i = 0; i < length; i++) {
            temp += combinationSum4II(nums, target - nums[i], length, cache);
        }
        cache.put(target, temp);
        return temp;
    }

从递归到分治的效率提升:

 

 动态规划解法:

/**
    *   @Author Nxy
    *   @Date 2019/12/21
    *   @Param 
    *   @Return 
    *   @Exception 
    *   @Description DP解法
    */
    public int combinationSum4III(int[] nums, int target){
        if(nums==null){return 0;}
        int length=nums.length;
        int[] cache=new int[target+1];
        cache[0]=1;
        for(int i=1;i<=target;i++){
            int temp=0;
            for(int j=0;j<length;j++){
                if(i-nums[j]==0){
                    temp++;
                    continue;
                }
                if(i-nums[j]>0){
                    temp+=cache[i-nums[j]];
                }
            }
            cache[i]=temp;
        }
        return cache[target];
    }

效率提升:

 

 递归太费时,我们单独看下分治到动态规划的效率提升:

posted @ 2019-12-22 00:40  牛有肉  阅读(225)  评论(0编辑  收藏  举报