Flink--time-window 的高级用法

 

 

1.现实世界中的时间是不一致的,在 flink 中被划分为事件时间,提取时间,处理时间三种。
2.如果以 EventTime 为基准来定义时间窗口那将形成 EventTimeWindow,要求消息本身就应该携带 EventTime 
3.如果以 IngesingtTime 为基准来定义时间窗口那将形成 IngestingTimeWindow,以 source 的 systemTime 为准。 
4.如果以 ProcessingTime 基准来定义时间窗口那将形成 ProcessingTimeWindow,以 operator 的 systemTime 为准。

EventTime 

1.要求消息本身就应该携带 EventTime
2.时间对应关系如下 

需求:

EventTime 3 数据: 

1527911155000,boos1,pc1,100.0 1527911156000,boos2,pc1,200.0 1527911157000,boos1,pc1,300.0 1527911158000,boos2,pc1,500.0 1527911159000,boos1,pc1,600.0 1527911160000,boos1,pc1,700.0 1527911161000,boos2,pc2,700.0 1527911162000,boos2,pc2,900.0 1527911163000,boos2,pc2,1000.0 1527911164000,boos2,pc2,1100.0 1527911165000,boos1,pc2,1100.0 1527911166000,boos2,pc2,1300.0 1527911167000,boos2,pc2,1400.0 1527911168000,boos2,pc2,1600.0
1527911169000,boos1,pc2,1300.0
View Code

代码实现: 

object EventTimeExample {
def main(args: Array[String]) {
//1.创建执行环境,并设置为使用 EventTime
val env = StreamExecutionEnvironment.getExecutionEnvironment
//置为使用 EventTime
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
//2.创建数据流,并进行数据转化
val source = env.socketTextStream("localhost", 9999)
case class SalePrice(time: Long, boosName: String, productName: String, price: Double)
val dst1: DataStream[SalePrice] = source.map(value => {
val columns = value.split(",")
SalePrice(columns(0).toLong, columns(1), columns(2), columns(3).toDouble)
 })
//3.使用 EventTime 进行求最值操作
val dst2: DataStream[SalePrice] = dst1
//提取消息中的时间戳属性
.assignAscendingTimestamps(_.time)
.keyBy(_.productName)
.timeWindow(Time.seconds(3))//设置 window 方法一
.max("price")
//4.显示结果
dst2.print()
//5.触发流计算
 
 env.execute()
}
}
View Code

当前代码理论上看没有任何问题,在实际使用的时候就会出现很多问题,甚至接 收不到数据或者接收到的数据是不准确的;这是因为对于 flink 最初设计的时 候,就考虑到了网络延迟,网络乱序等问题,所以提出了一个抽象概念基座水印 

(WaterMark); 

水印分成两种形式:
第一种:

第二种: 

所以,我们需要考虑到网络延迟的状况,那么代码中就需要添加水印操作:
object EventTimeOperator {
  def main(args: Array[String]): Unit = {
    //创建执行环境,并设置为使用EventTime
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)//注意控制并发数
    //置为使用EventTime
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    val source = env.socketTextStream("localhost", 9999)
    val dst1: DataStream[SalePrice] = source.map(value => {
      val columns = value.split(",")
      SalePrice(columns(0).toLong, columns(1), columns(2), columns(3).toDouble)
    })
    //todo 水印时间  assignTimestampsAndWatermarks
    val timestamps_data = dst1.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks[SalePrice]{

      var currentMaxTimestamp:Long = 0
      val maxOutOfOrderness = 2000L //最大允许的乱序时间是2s
      var wm : Watermark = null
      val format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS")
      override def getCurrentWatermark: Watermark = {
        wm = new Watermark(currentMaxTimestamp - maxOutOfOrderness)
        wm
      }

      override def extractTimestamp(element: SalePrice, previousElementTimestamp: Long): Long = {
        val timestamp = element.time
        currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp)
       
      }
    })
    val data: KeyedStream[SalePrice, String] = timestamps_data.keyBy(line => line.productName)
    val window_data: WindowedStream[SalePrice, String, TimeWindow] = data.timeWindow(Time.seconds(3))
    val apply: DataStream[SalePrice] = window_data.apply(new MyWindowFunc)
    apply.print()
    env.execute()

  }
}
case class SalePrice(time: Long, boosName: String, productName: String, price: Double)
class MyWindowFunc extends WindowFunction[SalePrice , SalePrice , String, TimeWindow]{
  override def apply(key: String, window: TimeWindow, input: Iterable[SalePrice], out: Collector[SalePrice]): Unit = {
    val seq = input.toArray
    val take: Array[SalePrice] = seq.sortBy(line => line.price).reverse.take(1)
    for(info <- take){
      out.collect(info)
    }
  }
}

 

ProcessingTime 

对于 processTime 而言,是 flink 处理数据的时间,所以就不关心发过来的数据 是不是有延迟操作,只关心数据具体的处理时间,所以不需要水印处理,操作相 对来说简单了很多 

object ProcessingTimeExample {
  def main(args: Array[String]) {
    //创建执行环境,并设置为使用EventTime
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(2)//注意控制并发数
    //置为使用ProcessingTime
    env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)

    val source = env.socketTextStream("localhost", 9999)
    case class SalePrice(time: Long, boosName: String, productName: String, price: Double)

    val dst1: DataStream[SalePrice] = source.map(value => {
      val columns = value.split(",")
      SalePrice(columns(0).toLong, columns(1), columns(2), columns(3).toDouble)
    })
    //processTime不需要提取消息中的时间
//    val timestamps_data: DataStream[SalePrice] = dst1.assignAscendingTimestamps(line => line.time)
    val keyby_data: KeyedStream[SalePrice, String] = dst1.keyBy(line => line.productName)
    //TODO 窗口事件是:TumblingProcessingTimeWindows
    val window_data: WindowedStream[SalePrice, String, TimeWindow] = keyby_data.window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
    val max_price: DataStream[SalePrice] = window_data.max("price")
    max_price.print()
    env.execute()
  }
}
View Code

 

 

posted @ 2018-05-21 20:09  niutao  阅读(4659)  评论(0编辑  收藏  举报