clickhouse 在order by非常慢的情况下优化(引擎+分段sql)

 

 

1、展示一下order by 在上亿级别数据量有多慢

对于clickhouse来说,当表的基础大到亿级别, 如果做查询后,在做order by 速递是非常慢的;

比如我有一张表有3亿条数据,表结构是:

{

  dvid 设备ID ,
  json 每个设备的信息 ,   dt 时间 ,   filter 过滤条件 ,   order_key 排序条件 }

ENGINE = MergeTree
PARTITION BY toYYYYMMDD(toDate(dt))
PRIMARY KEY (dt, dvid)
ORDER BY (dt, dvid)
SETTINGS index_granularity = 256


现在要统计3个月(1.5亿条)的设备数量,并按照order_key做排序

给出的sql:

select count(1) from 
(select
dt, toUInt32(dvid) as dvid , json fromwhere filter条件 order by order_key排序条件)

很简单的sql,但是查询速度很慢:

+---------+
| count() |
+---------+
| 1262100 |
+---------+
1 row in set (37.50 sec)

但是当你把order by去掉后,同样是数据量查询速度会非常快

+---------+
| count() |
+---------+
| 1262100 |
+---------+
1 row in set (1.74 sec)

 

2、查看执行计划,看看为什么这么慢

2.1、先看没有order by的执行计划:

+-------------------------------------------------------------------------------------------------+
| explain                                                                                         |
+-------------------------------------------------------------------------------------------------+
| Expression ((Projection + Before ORDER BY))                                                     |
|   Aggregating                                                                                   |
|     Expression ((Before GROUP BY + Projection))                                                 |
|       SettingQuotaAndLimits (Set limits and quota after reading from storage)                   |
|         Union                                                                                   |
|           Expression ((Convert block structure for query from local replica + Before ORDER BY)) |
|             SettingQuotaAndLimits (Set limits and quota after reading from storage)             |
|               ReadFromStorage (MergeTree)                                                       |
|           ReadFromPreparedSource (Read from remote replica)                                     |
+-------------------------------------------------------------------------------------------------+
9 rows in set (0.05 sec)

大概意思是:

第一步:从每个机器的硬盘上把数据读取出来

第二步:union一下每个机器读取的数据

第三步:求count

没有order by的总耗时:1.7s

2.2、进行order by的执行计划

+-------------------------------------------------------------------------------------------+
| explain                                                                                   |
+-------------------------------------------------------------------------------------------+
| Expression ((Projection + Before ORDER BY))                                               |
|   Aggregating                                                                             |
|     Expression ((Before GROUP BY + Projection))                                           |
|       MergingSorted (Merge sorted streams for ORDER BY)                                   |
|         SettingQuotaAndLimits (Set limits and quota after reading from storage)           |
|           Union                                                                           |
|             Expression (Convert block structure for query from local replica)             |
|               FinishSorting                                                               |
|                 Expression (Before ORDER BY)                                              |
|                   SettingQuotaAndLimits (Set limits and quota after reading from storage) |
|                     Expression (Remove unused columns after reading from storage)         |
|                       Union                                                               |
|                         MergingSorted (Merge sorting mark ranges)                         |
|                           Expression (Calculate sorting key prefix)                       |
|                             ReadFromStorage (MergeTree with order)                        |
|                         MergingSorted (Merge sorting mark ranges)                         |
|                           Expression (Calculate sorting key prefix)                       |
|                             ReadFromStorage (MergeTree with order)                        |
|                         MergingSorted (Merge sorting mark ranges)                         |
|                           Expression (Calculate sorting key prefix)                       |
|                             ReadFromStorage (MergeTree with order) 
...................
                省略一摸一样的N行
              ...................
 

大概意思:

1、从硬盘读取需要的数据(部分,因为order by需要在内存里面快速排序,无法读取全部)

2、按照order by 的key进行排序

3、N多个order by排序完的数据,在做最终汇总,然后对汇总后的数据在做排序(这一步也会根据数据量分成多步完成)

4、最终做聚合求count

最终order by的总耗时:37.5s

3、优化

3.1、切换引擎

上一步慢、猜测可能是clickhouse的mergeTree引擎并不适合做排序操作,于是尝试了各种引擎,最终得到最适合order by的引擎:ReplicatedAggregatingMergeTree

重建建表:

ENGINE = ReplicatedAggregatingMergeTree('/clickhouse/tables/{shard}/库/表', '{replica}')
PARTITION BY toYYYYMMDD(toDate(dt))
PRIMARY KEY dvid
ORDER BY dvid
SETTINGS index_granularity = 8196

然后增加表的数据量,将原来的1.5亿条 增加到3.5亿条

执行同样的语句,测试性能:

1、不带order by

+---------+
| count() |
+---------+
| 3290193 |
+---------+
1 row in set (3.58 sec)
2、带order by的查询速度
+---------+
| count() |
+---------+
| 3290193 |
+---------+
1 row in set (4.16 sec)

 

3.2、查看切换ReplicatedAggregatingMergeTree引擎后的执行计划

1、不带order by的执行计划

+-------------------------------------------------------------------------------------------------+
| explain                                                                                         |
+-------------------------------------------------------------------------------------------------+
| Expression ((Projection + Before ORDER BY))                                                     |
|   Aggregating                                                                                   |
|     Expression ((Before GROUP BY + Projection))                                                 |
|       SettingQuotaAndLimits (Set limits and quota after reading from storage)                   |
|         Union                                                                                   |
|           Expression ((Convert block structure for query from local replica + Before ORDER BY)) |
|             SettingQuotaAndLimits (Set limits and quota after reading from storage)             |
|               ReadFromStorage (MergeTree)                                                       |
|           ReadFromPreparedSource (Read from remote replica)                                     |
+-------------------------------------------------------------------------------------------------+
9 rows in set (0.05 sec)

不带order by的执行计划MergeTree的引擎一样,所以没任何改变,之所以查询速度从1.74s变到3.58s 是因为基础数据从原来的1.5亿变成现在的3.3亿

2、带order by的执行计划

+-----------------------------------------------------------------------------------------------+
| explain                                                                                       |
+-----------------------------------------------------------------------------------------------+
| Expression ((Projection + Before ORDER BY))                                                   |
|   Aggregating                                                                                 |
|     Expression ((Before GROUP BY + Projection))                                               |
|       MergingSorted (Merge sorted streams for ORDER BY)                                       |
|         SettingQuotaAndLimits (Set limits and quota after reading from storage)               |
|           Union                                                                               |
|             Expression (Convert block structure for query from local replica)                 |
|               MergingSorted (Merge sorted streams for ORDER BY)                               |
|                 MergeSorting (Merge sorted blocks for ORDER BY)                               |
|                   PartialSorting (Sort each block for ORDER BY)                               |
|                     Expression (Before ORDER BY)                                              |
|                       SettingQuotaAndLimits (Set limits and quota after reading from storage) |
|                         ReadFromStorage (MergeTree)                                           |
|             ReadFromPreparedSource (Read from remote replica)                                 |
+-----------------------------------------------------------------------------------------------+
14 rows in set (0.08 sec)

 

对比MergeTree引擎的order by执行计划,ReplicatedAggregatingMergeTree的要简化很多

优化点显而易见:分机器/分区/分段的读取数据做排序,在汇总 , 并且是按照block进行排序的

1、对每台机器,按照一定范围进行PartialSorting(不按照具体数据排序,而是按照block快排序)

2、对第一步排序好的block进行汇总排序(因为已经知道第一步block的顺序了,所以汇总的时候直接对比最大block和最小block就可以了)

3、本地的排序好了,在做分布式的排序进行最终的汇总排序

4、求count

上面的操作很像归并排序,适应大数据量分布式排序

4、对sql做优化

【做完上一步其实已经慢满足需求了,但我们的需求并不是单纯为了求数量,而是拿到自定义时间段的某个第一个出现的东西】

切换引擎后,查询速度有了本质的提升,接下来在对sql做优化。假如原来的sql是查询3个月的数据量,那么还可以进行分段查,比如每15天/一个月 做一次order by

原来的sql:

select count(1) from 
(select 
dt,
toUInt32(dvid) as dvid ,
json 
fromwhere filter条件 and dt >= '2021-01-01' <= '2021-03-31'
order by order_key排序条件)

优化后的sql:

select count(1) from (
    select dt,toUInt32(dvid) as dvid ,json fromwhere filter条件 and dt>='2021-01-01' and dt <= '2021-01-31' order by order_key排序条件
    union all
    select dt,toUInt32(dvid) as dvid ,json fromwhere filter条件 and dt>='2021-02-01' and dt <= '2021-02-31' order by order_key排序条件
    union all
    select dt,toUInt32(dvid) as dvid ,json fromwhere filter条件 and dt>='2021-03-01' and dt <= '2021-03-31' order by order_key排序条件
)

查询速度:

+---------+
| count() |
+---------+
| 3290193 |
+---------+
1 row in set (2.74 sec)

经过优化引擎+优化sql:最终的查询速度由原来的37.5s 优化2.74s

 

 

 

 

posted @ 2021-09-19 22:50  niutao  阅读(8861)  评论(2编辑  收藏  举报