基于milvus搭建“以图搜图”服务(附代码)
“以图搜图”服务需要的关键功能和准备工作:
1 图像向量化功能,可选的模型有很多,本例选用resnet网络提取图像特征;
2 milvus建表,用milvus存放图像特征,通过唯一ID(此处称:milvus_id)与图像一一对应,sql建表将milvus_id作为唯一索引,存放图像的其他信息(如url,来源等);
3 异步添加图像,同步搜索图像,添加图像的量通常会很大,因此采用异步批量的方式将图像特征加载到milvus,图像添加服务会将每次的请求信息存到sql,写个脚本专门用来定时批量加载图像特征到milvus,由于是异步操作,可能会出现重复加载的情况,此处使用redis进行去重。图像搜索的请求通常会比图像添加少很多,因此图像搜索使采用同步方式返回结果;
(总结:需建立三个表:milvus表1,存放图像特征;sql表2,存放图像信息,数据与milvus表1一一对应;sql表3,存放图像添加请求信息,用于图像特征异步批量加载到milvus)
“以图搜图”服务关键功能及代码(代码仅做参考)
1 图像向量化
""" 功能:图像向量化 """ from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions import numpy as np from numpy import linalg as LA import time model = ResNet50(weights='imagenet') # model.summary() def img2feature(img_path, input_dim=224): # 图像路径???图像数据 img = image.load_img(img_path, target_size=(input_dim, input_dim)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) x = model.predict(x) x = x / LA.norm(x) return x def main(): img_path = '1.jpg' t0 = time.time() res = img2feature(img_path) print(time.time() - t0, res.shape) # print(res, type(res), res.shape) if __name__ == "__main__": main()
2 milvus表的操作
# coding:utf-8 from functools import reduce import numpy as np import time from img2feature import img2feature from pymilvus import ( connections, list_collections, FieldSchema, CollectionSchema, DataType, Collection, utility ) field_name = 'image_feature' host = '***.***.***.***' port = '19530' dim = 1000 default_fields = [ FieldSchema(name="milvus_id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="feature", dtype=DataType.FLOAT_VECTOR, dim=dim), FieldSchema(name="create_time", dtype=DataType.INT64) ] # create_table def create_table(): connections.connect(host=host, port=port) # create collection default_schema = CollectionSchema(fields=default_fields, description="test collection") print(f"\nCreate collection...") collection = Collection(name=field_name, schema=default_schema) print(f"\nCreate index...") default_index = {"index_type": "FLAT", "params": {"nlist": 128}, "metric_type": "L2"} collection.create_index(field_name="feature", index_params=default_index) print(print(f"\nCreate index...is OKOKOKOKOK")) collection.load() # insert data def insert_data(): connections.connect(host=host, port=port) default_schema = CollectionSchema(fields=default_fields, description="test collection") collection = Collection(name=field_name, schema=default_schema) vectors = img2feature('1.jpg').tolist()[0] print(type(vectors), len(vectors)) data1 = [ [123], [vectors], [int(time.time())] ] collection.insert(data1) print('insert compete') # search data def search_data(): print('search') connections.connect(host=host, port=port) collection = Collection(name=field_name) print('连接成功') # 首次查询建立索引和load() # default_index = {"index_type": "FLAT", "params": {"nlist": 128}, "metric_type": "L2"} # print(f"\nCreate index...") # collection.create_index(field_name="feature", index_params=default_index) # print(print(f"\nCreate index...is OKOKOKOKOK")) # collection.load() # exit() vectors = img2feature('1.jpg').tolist()[0] topK = 10 search_params = {"metric_type": "L2", "params": {"nprobe": 10}} res = collection.search( [vectors], "feature", search_params, topK, "create_time > {}".format(0), output_fields=["milvus_id"] ) print('>>>', res) for hits in res: print(len(hits)) for hit in hits: print(hit) print('查询结束') def show_nums(): connections.connect(host=host, port=port) collection = Collection(name=field_name) print('ok') print(collection.num_entities) # delete data def delete_table(): connections.connect(host=host, port=port) default_schema = CollectionSchema(fields=default_fields, description="test collection") collection = Collection(name=field_name, schema=default_schema) print('>>>', utility.has_collection(field_name)) collection.drop() print('>>>', utility.has_collection(field_name)) if __name__ == "__main__": t1 = time.time() # create_table() # insert_data() # search_data() show_nums() # delete_table() print('time cost: {}'.format(time.time() - t1))
3 创建sql表2、表3
略
4 图像添加、搜索服务
from rest_framework.views import APIView as View from kpdjango.response import SucessAPIResponse, ErrorAPIResponse from kpmysql.base import Kpmysql from core import search_image import kplog import logging log = logging.getLogger("console") class add_image(View): def post(self, requests): try: db = Kpmysql.connect("db168") cur = db.cursor() image_info = requests.POST.get('image_info') image_path = requests.POST.get('image_path') sql = "INSERT INTO t_image_search_image_add_log(image_path, info) VALUES(%s, %s)" cur.execute(sql, (image_path, image_info)) db.commit() log.info('添加图像成功:{}-{}'.format(image_path, image_info)) return SucessAPIResponse(msg="Success") except Exception as e: log.info('添加图像失败:{}'.format(e)) return ErrorAPIResponse(msg="Fail") class search_image(View): def post(self, requests): try: image_path = requests.POST.get('image_path') res = search_image(image_path) log.info('查询图像成功:{}-{}'.format(image_path, res)) return SucessAPIResponse(msg="Success", data={"data": res}) except Exception as e: log.info('查询图像成功:{}'.format(e)) return ErrorAPIResponse(msg="Fail")
5 图像异步批量加载
import time, datetime from kpmysql.base import Kpmysql from core import insert_data_many from concurrent.futures import ThreadPoolExecutor import redis from conf.setting import REDIS from core import str2time import kplog import logging log = logging.getLogger("console") log_addimgs = logging.getLogger("console_addimgs") def worker(datas): try: redis_cli = redis.Redis(host=REDIS.get('host'), port=REDIS.get('port'), password=REDIS.get('password'), db=REDIS.get('db')) dics = [] ids = [] for data in datas: if redis_cli.zscore('image_search', str(data[0])): # 基于redis去重 continue dics.append({'image_path': data[1], 'create_time': data[2]}) ids.append((data[0])) redis_cli.zadd('image_search', {str(data[0]): str2time(data[2])}) # 数据插入milvus insert_data_many(dics) # 更新 set t_image_search_image_add_log is_load=1 sql_update = """UPDATE t_image_search_image_add_log SET is_load=1 WHERE id=%s""" db168 = Kpmysql.connect("db168") cur168 = db168.cursor() cur168.executemany(sql_update, ids) db168.commit() except Exception as e: print(e) def main(): max_workers = 20 # 最大线程数 pool = ThreadPoolExecutor(max_workers=max_workers, thread_name_prefix='Thread') task_list = [] init_time = datetime.datetime.now() - datetime.timedelta(hours=13) create_time_init = '2020-2-22 00:00:00' while True: now = datetime.datetime.now() diff = now - init_time if diff.seconds > 3600: # 加载 t_image_search_image_add_log where is_load=0 数据 db168 = Kpmysql.connect("db168") cur168 = db168.cursor() sql = """SELECT id, image_path, create_time FROM t_image_search_image_add_log WHERE is_load=0 and create_time >= %s ORDER BY create_time""" cur168.execute(sql, create_time_init) datas = cur168.fetchall() create_time_init = datas[-1][2] while True: for _i, _n in enumerate(task_list): if _n.done(): task_list.pop(_i) if len(task_list) < int(max_workers * 0.9): break task_list.append(pool.submit(worker, datas)) init_time = now time.sleep(600) if __name__ == "__main__": main()
优化(重点)
经过实际测试和使用的建议:
1. keras在调用GPU时并开启多线程时不如pytorch方便,pytorch占用显存更少;
2. 定时从数据库拿数据,改成kafka生产消费模型,代码更简洁,逻辑更简单;