Python深度学习读书笔记-6.二分类问题
电影评论分类:二分类问题
加载 IMDB 数据集
1 from keras.datasets import imdb 2 (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
将整数序列编码为二进制矩阵(One-hot编码)
import numpy as np def vectorize_sequences(sequences, dimension=10000): results = np.zeros((len(sequences), dimension)) #创建一个形状为(len(sequences),dimension) 的零矩阵 for i, sequence in enumerate(sequences): results[i, sequence] = 1. #将 results[i] 的指定索引设为 1 return results x_train = vectorize_sequences(train_data) #将训练数据向量化 x_test = vectorize_sequences(test_data) #将测试数据向量化
将标签向量化
y_train = np.asarray(train_labels).astype('float32') y_test = np.asarray(test_labels).astype('float32')
构建网络
模型定义
from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(16, activation='relu', input_shape=(10000,))) model.add(layers.Dense(16, activation='relu')) model.add(layers.Dense(1, activation='sigmoid’))
编译模型
- 使用默认优化器
model.compile(optimizer='rmsprop’, loss='binary_crossentropy’, metrics=['accuracy'])
- or使用配置优化器
from keras import optimizers model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss='binary_crossentropy’, metrics=['accuracy'])
- or使用自定义的损失和指标
from keras import losses from keras import metrics model.compile(optimizer=optimizers.RMSprop(lr=0.001), loss=losses.binary_crossentropy, metrics=[metrics.binary_accuracy])
留出验证集
x_val = x_train[:10000] partial_x_train = x_train[10000:] y_val = y_train[:10000] partial_y_train = y_train[10000:]
训练模型
history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))
绘制训练损失和验证损失
import matplotlib.pyplot as plt history_dict = history.history loss_values = history_dict['loss'] val_loss_values = history_dict['val_loss'] epochs = range(1, len(loss_values) + 1) plt.plot(epochs, loss_values, 'bo', label='Training loss’) # 'bo' 表示蓝色圆点 plt.plot(epochs, val_loss_values, 'b', label='Validation loss’) # 'b' 表示蓝色实线 plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show()
绘制训练精度和验证精度
plt.clf()
acc = history_dict['accuracy']
val_acc = history_dict['val_accuracy']
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
为了防止过拟合,你可以在 3 轮之后停止训练。
从头开始重新训练一个模型
model = models.Sequential() model.add(layers.Dense(16, activation='relu', input_shape=(10000,))) model.add(layers.Dense(16, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=4, batch_size=512) results = model.evaluate(x_test, y_test)
最终结果如下所示。
>>> results
[0.2929924130630493, 0.88327999999999995]
这种相当简单的方法得到了 88% 的精度。利用最先进的方法,你应该能够得到接近 95% 的
精度。
使用训练好的网络在新数据上生成预测结果
>>> model.predict(x_test)
array([[ 0.98006207]
[ 0.99758697]
[ 0.99975556]
...,
[ 0.82167041]
[ 0.02885115]
[ 0.65371346]], dtype=float32)