CV2摄像头人脸、人眼、微笑等检测

import cv2

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')#人脸
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml')#人眼
smile_cascade=cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_smile.xml')#微笑

#3打开摄像头
capture=cv2.VideoCapture(0)

while True:
    #读取该帧的画面
    ret, img = capture.read()
    # 6灰度处理
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    # 7检查人脸
    faces = face_cascade.detectMultiScale(gray, 1.1, 3, 0, (120, 120))

    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 3)
        face_area = img[y:y + h, x:x + w]
        eyes = eye_cascade.detectMultiScale(face_area,1.3,10)
        # 用人眼级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
        for (ex, ey, ew, eh) in eyes:
            # 画出人眼框,绿色,画笔宽度为1
            cv2.rectangle(face_area, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 1)

        smile = smile_cascade.detectMultiScale(face_area, scaleFactor=1.16, minNeighbors=50, minSize=(50, 50),
                                               flags=cv2.CASCADE_SCALE_IMAGE)
        # 用人眼级联分类器引擎在人脸区域进行人眼识别,返回的eyes为眼睛坐标列表
        for (ex, ey, ew, eh) in smile:
            # 画出人眼框,绿色,画笔宽度为1
            cv2.rectangle(face_area, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 1)
            cv2.putText(img, 'Smile', (x, y - 7), 3, 1.2, (0, 0, 255), 2, cv2.LINE_AA)
    # 9显示图片
    cv2.imshow("My_按q退出", img)
    # 10暂停窗口
    if cv2.waitKey(5) & 0xFF == ord('q'):
        break
#11释放资源
capture.release()
# #12销毁窗口
cv2.destoryAllWindows()

级联分类器在cv2的data下,按照上方格式去写,因此是不需要单独找联机分类器的!

posted @ 2019-09-18 15:57  程序杰杰  阅读(2229)  评论(0编辑  收藏  举报