网络基础之网络协议篇
一.操作系统基础
操作系统:(Operating System,简称OS)是管理和控制计算机硬件与软件资源的计算机程序,是直接运行在“裸机”上的最基本的系统软件,任何其他软件都必须在操作系统的支持下才能运行。
注:计算机(硬件)->os->应用软件
二.网络通信原理
2.1 互联网的本质就是一系列的网络协议
一台硬设有了操作系统,然后装上软件你就可以正常使用了,然而你也只能自己使用
像这样,每个人都拥有一台自己的机器,然而彼此孤立
结论:英语成为世界上所有人通信的统一标准,如果把计算机看成分布于世界各地的人,那么连接两台计算机之间的internet实际上就是
一系列统一的标准,这些标准称之为互联网协议,互联网的本质就是一系列的协议,总称为‘互联网协议’(Internet Protocol Suite).
互联网协议的功能:定义计算机如何接入internet,以及接入internet的计算机通信的标准。
2.2 osi七层协议
互联网协议按照功能不同分为osi七层或tcp/ip五层或tcp/ip四层
每层运行常见物理设备
2.3 tcp/ip五层模型讲解
我们将应用层,表示层,会话层并作应用层,从tcp/ip五层协议的角度来阐述每层的由来与功能,搞清楚了每层的主要协议就理解了整个互联网通信的原理。
首先,用户感知到的只是最上面一层应用层,自上而下每层都依赖于下一层,所以我们从最下一层开始切入,比较好理解每层都运行特定的协议,越往上越靠近用户,越往下越靠近硬件
2.3.1 物理层
物理层由来:上面提到,孤立的计算机之间要想一起玩,就必须接入internet,言外之意就是计算机之间必须完成组网
物理层功能:主要是基于电器特性发送高低电压(电信号),高电压对应数字1,低电压对应数字0
2.3.2 数据链路层
数据链路层由来:单纯的电信号0和1没有任何意义,必须规定电信号多少位一组,每组什么意思数据链路层的功能:定义了电信号的分组方式
以太网协议:早期的时候各个公司都有自己的分组方式,后来形成了统一的标准,即以太网协议ethernet
ethernet规定
一组电信号构成一个数据包,叫做‘帧’
每一数据帧分成:报头head和数据data两部分
head data
head包含:(固定18个字节)
发送者/源地址,6个字节
接收者/目标地址,6个字节
数据类型,6个字节
data包含:(最短46字节,最长1500字节)
数据包的具体内容
head长度+data长度=最短64字节,最长1518字节,超过最大限制就分片发送
mac地址:head中包含的源和目标地址由来:ethernet规定接入internet的设备都必须具备网卡,发送端和接收端的地址便是指网卡的地址,即mac地址
mac地址:每块网卡出厂时都被烧制上一个世界唯一的mac地址,长度为48位2进制,通常由12位16进制数表示(前六位是厂商编号,后六位是流水线号)ipconfig /all查看
广播:
有了mac地址,同一网络内的两台主机就可以通信了(一台主机通过arp协议获取另外一台主机的mac地址)
ethernet采用最原始的方式,广播的方式进行通信,即计算机通信基本靠吼
2.3.3 网络层
网络层由来:有了ethernet、mac地址、广播的发送方式,世界上的计算机就可以彼此通信了,问题是世界范围的互联网是由一个个彼此隔离的小的局域网组成的,那么如果所有的通信都采用以太网的广播方式,那么一台机器发送的包全世界都会收到,这就不仅仅是效率低的问题了,这会是一种灾难
上图结论:必须找出一种方法来区分哪些计算机属于同一广播域,哪些不是,如果是就采用广播的方式发送,如果不是,就采用路由的方式(向不同广播域/子网分发数据包),mac地址是无法区分的,它只跟厂商有关
网络层功能:引入一套新的地址用来区分不同的广播域/子网,这套地址即网络地址
IP协议:
规定网络地址的协议叫ip协议,它定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示,
范围0.0.0.0-255.255.255.255
一个ip地址通常写成四段十进制数例:172.16.10.1即10101100.00010000.00001010.00000001
ip地址分成两部分
网络部分:标识子网
主机部分:标识主机
注意:单纯的ip地址段只是标识了ip地址的种类,从网络部分或主机部分都无法辨识一个ip所处的子网。例:172.16.10.1与172.16.10.2并不能确定二者处于同一子网
子网掩码
所谓”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.10.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。
知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。
比如,已知IP地址172.16.10.1和172.16.10.2的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,
172.16.10.1:10101100.00010000.00001010.000000001
255255.255.255.0:11111111.11111111.11111111.00000000
AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0
172.16.10.2:10101100.00010000.00001010.000000010
255255.255.255.0:11111111.11111111.11111111.00000000
AND运算得网络地址结果:10101100.00010000.00001010.000000001->172.16.10.0
结果都是172.16.10.0,因此它们在同一个子网络。
总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。
ip数据包
ip数据包也分为head和data部分,无须为ip包定义单独的栏位,直接放入以太网包的data部分
head:长度为20到60字节
data:最长为65,515字节。
而以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。
以太网头 ip 头 ip数据
ARP协议地址解析协议,即ARP(Address Resolution Protocol)
arp协议由来:计算机通信基本靠吼,即广播的方式,所有上层的包到最后都要封装上以太网头,然后通过以太网协议发送,在谈及以太网协议时候,我门了解到通信是基于mac的广播方式实现,计算机在发包时,获取自身的mac是容易的,如何获取目标主机的mac,就需要通过arp协议
arp协议功能:广播的方式发送数据包,获取目标主机的mac地址
协议工作方式:每台主机ip都是已知的
子网掩码有另外一种表示方式,在ip地址后加‘/一个十进制数’,十进制数代表网络地址的位数,255.255.255.0是24位
例如:主机172.16.10.10/24访问172.16.10.11/24
一:首先通过ip地址和子网掩码区分出自己所处的子网
场景 数据包地址
同一子网 目标主机mac,目标主机ip
不同子网 网关mac,目标主机ip
二:分析172.16.10.10/24与172.16.10.11/24处于同一网络(如果不是同一网络,那么下表中目标ip为172.16.10.1,通过arp获取的是网关的mac。
三:这个包会以广播的方式在发送端所处的自网内传输,所有主机接收后拆开包,发现目标ip为自己的,就响应,返回自己的mac
2.3.4 传输层
三层架构:硬件、操作系统、软件。网络层只能找到子网里的主机,目标主机上的程序需要传输层。
传输层的由来:网络层的ip帮我们区分子网,以太网层的mac帮我们找到主机,然后大家使用的都是应用程序,你的电脑上可能同时开启qq,暴风影音等多个应用程序,
那么我们通过ip和mac找到了一台特定的主机,如何标识这台主机上的应用程序,答案就是端口,端口即应用程序与网卡关联的编号。
传输层功能:建立端口到端口的通信
补充:端口范围0-65535,0-1023为系统占用端口
tcp协议:可靠传输,TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。
udp通信模型中, 在通信开始之前, ⼀定要先建⽴相关的链接, 才能发送数据, 类似于⽣活中, "打电话""
udp协议:不可靠传输,”报头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。
udp通信模型中, 在通信开始之前, 不需要建⽴相关的链接, 只需要发送数据即可, 类似于⽣活中, "写信""
syn=1发起新链接请求,FIN请求断开链接,ack=1确认响应
窗口:发数据时按多大尺寸发的,按多大尺寸回
URG=1开启紧急指针
特点:
以字节为单位的滑动窗口
client的发送窗口并不总是和 server 的接收窗口一样大(因为有一定的时间滞后)
要求:
TCP 标准没有规定对不按序到达的数据应如何处理.通常是先临时存放在接收窗口中,等到字节流中所缺少的字节收到后,再按序交付上层的应用进程
TCP 要求接收方必须有累积确认的功能,这样可以减小传输开销
各个段位说明:
源端口和目的端口: 各占 2 字节.端口是传输层与应用层的服务接口.传输层的复用和分用功能都要通过端口才能实现
序号:占4字节.TCP连接中传送的数据流中的每一个字节都编上一个序号.序号字段的值则指的是本报文段所发送的数据的第一个字节的序号
确认号:占 4字节,是期望收到对方的下一个报文段的数据的第一个字节的序号
数据偏移/首部长度:占4位,它指出 TCP 报文段的数据起始处距离 TCP 报文段的起始处有多远.“数据偏移”的单位是 32 位字(以 4 字节为计算单位)
保留: 占 6 位,保留为今后使用,但目前应置为0
紧急URG: URG=1 时,表明紧急指针字段有效.它告诉系统此报文段中有紧急数据,应尽快传送(相当于高优先级的数据)
确认ACK:只有当 ACK=1 时确认号字段才有效.当 ACK=0 时,确认号无效
PSH(PuSH):接收 TCP 收到 PSH = 1 的报文段,就尽快地交付接收应用进程,而不再等到整个缓存都填满了后再向上交付
RST (ReSeT): 当RST=1 时,表明 TCP 连接中出现严重差错(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立运输连接
同步 SYN:同步 SYN = 1 表示这是一个连接请求或连接接受报文
终止 FIN:用来释放一个连接.FIN=1 表明此报文段的发送端的数据已发送完毕,并要求释放运输连接
检验和:占 2 字节.检验和字段检验的范围包括首部和数据这两部分.在计算检验和时,要在 TCP 报文段的前面加上 12 字节的伪首部
紧急指针:占16位,指出在本报文段中紧急数据共有多少个字节(紧急数据放在本报文段数据的最前面)
选项:长度可变.TCP 最初只规定了一种选项,即最大报文段长度 MSS.MSS 告诉对方 TCP:“我的缓存所能接收的报文段的数据字段的最大长度是 MSS 个字节.” [MSS(Maximum Segment Size)是 TCP 报文段中的数据字段的最大长度.数据字段加上 TCP 首部才等于整个的 TCP 报文段]
填充:是为了使整个首部长度是 4 字节的整数倍
其他选项:
窗口扩大:占 3 字节,其中有一个字节表示移位值 S.新的窗口值等于TCP 首部中的窗口位数增大到(16 + S),相当于把窗口值向左移动 S 位后获得实际的窗口大小
时间戳:占10 字节,其中最主要的字段时间戳值字段(4字节)和时间戳回送回答字段(4字节)
选择确认:接收方收到了和前面的字节流不连续的两2字节.如果这些字节的序号都在接收窗口之内,那么接收方就先收下这些数据,但要把这些信息准确地告诉发送方,使发送方不要再重复发送这些已收到的数据
数据单位
TCP 传送的数据单位协议是 TCP 报文段(segment)
tcp为什么建链接三次握手和断链接要四次挥手?
建链接没有数据传输,目的是建立双向线,本来四步,中间为了提高效率并作一步建好通路,进行数据传输。产生数据后,左边发送断开信息,右边响应并发送断开链接,左边发完,右边不一定发完。断开一定要四次。
连接建立步骤:
client 的 TCP 向 server 发出连接请求报文段,其首部中的同步位 SYN = 1,并选择序号 seq = x,表明传送数据时的第一个数据字节的序号是 x
server 的 TCP 收到连接请求报文段后,如同意,则发回确认(server 在确认报文段中应使 SYN = 1,使 ACK = 1,其确认号ack = x﹢1,自己选择的序号 seq = y)
client 收到此报文段后向 server 给出确认,其 ACK = 1,确认号 ack = y﹢1(client 的 TCP 通知上层应用进程,连接已经建立,server 的 TCP 收到主机 client 的确认后,也通知其上层应用进程:TCP 连接已经建立)
断开连接步骤:
数据传输结束后,通信的双方都可释放连接.现在 A 的应用进程先向其 TCP 发出连接释放报文段,并停止再发送数据,主动关闭 TCP 连接(A 把连接释放报文段首部的 FIN = 1,其序号seq = u,等待 B 的确认)
B 发出确认,确认号 ack = u+1,而这个报文段自己的序号 seq = v(TCP 服务器进程通知高层应用进程.从 A 到 B 这个方向的连接就释放了,TCP 连接处于半关闭状态.B 若发送数据,A 仍要接收)
若 B 已经没有要向 A 发送的数据,其应用进程就通知 TCP 释放连接
A 收到连接释放报文段后,必须发出确认,在确认报文段中 ACK = 1,确认号 ack=w﹢1,自己的序号 seq = u + 1
注意:
TCP 连接必须经过时间 2MSL 后才真正释放掉(2MSL 的时间的用意 --- 为了保证 A 发送的最后一个 ACK 报文段能够到达 B.防止 “已失效的连接请求报文段”出现在本连接中.A 在发送完最后一个 ACK 报文段后,再经过时间 2MSL,就可以使本连接持续的时间内所产生的所有报文段,都从网络中消失.这样就可以使下一个新的连接中不会出现这种旧的连接请求报文段)
2MSL即两倍的MSL, TCP的TIME_WAIT状态也称为2MSL等待状态,
当TCP的⼀端发起主动关闭, 在发出最后⼀个ACK包后,
即第3次握 ⼿完成后发送了第四次握⼿的ACK包后就进⼊了TIME_WAIT状
态,
必须在此状态上停留两倍的MSL时间,
等待2MSL时间主要⽬的是怕最后⼀个 ACK包对⽅没收到,
那么对⽅在超时后将重发第三次握⼿的FIN包,
主动关闭端接到重发的FIN包后可以再发⼀个ACK应答包。
python基础语⾔
tcp的2MSL问题 121在TIME_WAIT状态 时两端的端⼝不能使⽤, 要等到2MSL时间结束才可继续
使⽤。
当连接处于2MSL等待阶段时任何迟到的报⽂段都将被丢弃。
不过在实际应⽤中可以通过设置 SO_REUSEADDR选项达到不必等待2MSL
时间结束再使⽤此端⼝。
想实现网络通信,每台主机需具备四要素
#######################################
1. TCP短连接
模拟⼀种TCP短连接的情况:
1. client 向 server 发起连接请求
2. server 接到请求, 双⽅建⽴连接
3. client 向 server 发送消息
4. server 回应 client
5. ⼀次读写完成, 此时双⽅任何⼀个都可以发起 close 操作
在第 步骤5中, ⼀般都是 client 先发起 close 操作。 当然也不排除有特殊的情
况。
从上⾯的描述看, 短连接⼀般只会在 client/server 间传递⼀次读写操作!
2. TCP⻓连接
再模拟⼀种⻓连接的情况:
1. client 向 server 发起连接
2. server 接到请求, 双⽅建⽴连接
3. client 向 server 发送消息
4. server 回应 client
5. ⼀次读写完成, 连接不关闭
6. 后续读写操作...
7. ⻓时间操作之后client发起关闭请求
3. TCP⻓/短连接操作过程
短连接的操作步骤是:
建⽴连接——数据传输——关闭连接...建⽴连接——数据传输——关闭连接
⻓连接的操作步骤是:
建⽴连接——数据传输...( 保持连接) ...数据传输——关闭连接
TCP⻓/短连接的优点和缺点⻓连接可以省去较多的TCP建⽴和关闭的操作, 减少浪费, 节约时间。对于频繁请求资源的客户来说, 较适⽤⻓连接。client与server之间的连接如果⼀直不关闭的话, 会存在⼀个问题,随着客户端连接越来越多, server早晚有扛不住的时候, 这时候server端需要采取⼀些策略,如关闭⼀些⻓时间没有读写事件发⽣的连接, 这样可以避免⼀些恶意连接导致server端服务受损;如果条件再允许就可以以客户端机器为颗粒度, 限制每个客户端的最⼤⻓连接数,这样可以完全避免某个蛋疼的客户端连累后端服务。短连接对于服务器来说管理较为简单, 存在的连接都是有⽤的连接, 不需要额外的控制⼿段。但如果客户请求频繁, 将在TCP的建⽴和关闭操作上浪费时间和带宽。
TCP⻓/短连接的应⽤场景⻓连接多⽤于操作频繁, 点对点的通讯, ⽽且连接数不能太多情况。每个TCP连接都需要三次握⼿, 这需要时间, 如果每个操作都是先连接,再操作的话那么处理速度会降低很多, 所以每个操作完后都不断开,再次处理时直接发送数据包就OK了, 不⽤建⽴TCP连接。例如: 数据库的连接⽤⻓连接, 如果⽤短连接频繁的通信会造成socket错误,⽽且频繁的socket 创建也是对资源的浪费。⽽像WEB⽹站的http服务⼀般都⽤短链接, 因为⻓连接对于服务端来说会耗费⼀定的资源,⽽像WEB⽹站这么频繁的成千上万甚⾄上亿客户端的连接⽤短连接会更省⼀些资源,如果⽤⻓连接, ⽽且同时有成千上万的⽤户, 如果每个⽤户都占⽤⼀个连接的话,那可想⽽知吧。 所以并发量⼤, 但每个⽤户⽆需频繁操作情况下需⽤短连好
########################################
socket
我们知道两个进程如果需要进行通讯最基本的一个前提能能够唯一的标示一个进程,在本地进程通讯中我们可以使用PID来唯一标示一个进程,但PID只在本地唯一,网络中的两个进程PID冲突几率很大,这时候我们需要另辟它径了,我们知道IP层的ip地址可以唯一标示主机,而TCP层协议和端口号可以唯一标示主机的一个进程,这样我们可以利用ip地址+协议+端口号唯一标示网络中的一个进程。
能够唯一标示网络中的进程后,它们就可以利用socket进行通信了,什么是socket呢?我们经常把socket翻译为套接字,socket是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用已实现进程在网络中通信。
三.网络通信实现
本机的IP地址
子网掩码
网关的IP地址
DNS的IP地址
获取这四要素分两种方式
1.静态获取:即手动配置
2.动态获取
通过dhcp获取
以太网头 ip头 udp头 dhcp数据包
(1)最前面的”以太网标头”,设置发出方(本机)的MAC地址和接收方(DHCP服务器)的MAC地址。前者就是本机网卡的MAC地址,后者这时不知道,就填入一个广播地址:FF-FF-FF-FF-FF-FF。
(2)后面的”IP标头”,设置发出方的IP地址和接收方的IP地址。这时,对于这两者,本机都不知道。于是,发出方的IP地址就设为0.0.0.0,接收方的IP地址设为255.255.255.255。
(3)最后的”UDP标头”,设置发出方的端口和接收方的端口。这一部分是DHCP协议规定好的,发出方是68端口,接收方是67端口。
这个数据包构造完成后,就可以发出了。以太网是广播发送,同一个子网络的每台计算机都收到了这个包。因为接收方的MAC地址是FF-FF-FF-FF-FF-FF,看不出是发给谁的,所以每台收到这个包的计算机,还必须分析这个包的IP地址,才能确定是不是发给自己的。当看到发出方IP地址是0.0.0.0,接收方是255.255.255.255,于是DHCP服务器知道”这个包是发给我的”,而其他计算机就可以丢弃这个包。
接下来,DHCP服务器读出这个包的数据内容,分配好IP地址,发送回去一个”DHCP响应”数据包。这个响应包的结构也是类似的,以太网标头的MAC地址是双方的网卡地址,IP标头的IP地址是DHCP服务器的IP地址(发出方)和255.255.255.255(接收方),UDP标头的端口是67(发出方)和68(接收方),分配给请求端的IP地址和本网络的具体参数则包含在Data部分。
新加入的计算机收到这个响应包,于是就知道了自己的IP地址、子网掩码、网关地址、DNS服务器等等参数。
四.网络通信流程
1.本机获取
本机的IP地址:192.168.1.100
子网掩码:255.255.255.0
网关的IP地址:192.168.1.1
DNS的IP地址:8.8.8.8
2.打开浏览器,想要访问Google,在地址栏输入了网址:www.google.com。
3.dns协议(基于udp协议)
13台根dns:
A.root-servers.net198.41.0.4美国
B.root-servers.net192.228.79.201美国(另支持IPv6)
C.root-servers.net192.33.4.12法国
D.root-servers.net128.8.10.90美国
E.root-servers.net192.203.230.10美国
F.root-servers.net192.5.5.241美国(另支持IPv6)
G.root-servers.net192.112.36.4美国
H.root-servers.net128.63.2.53美国(另支持IPv6)
I.root-servers.net192.36.148.17瑞典
J.root-servers.net192.58.128.30美国
K.root-servers.net193.0.14.129英国(另支持IPv6)
L.root-servers.net198.32.64.12美国
M.root-servers.net202.12.27.33日本(另支持IPv6)
域名定义:http://jingyan.baidu.com/article/1974b289a649daf4b1f774cb.html
顶级域名:以.com,.net,.org,.cn等等属于国际顶级域名,根据目前的国际互联网域名体系,国际顶级域名分为两类:类别顶级域名(gTLD)和地理顶级域名(ccTLD)两种。类别顶级域名是 以"COM"、"NET"、"ORG"、"BIZ"、"INFO"等结尾的域名,均由国外公司负责管理。地理顶级域名是以国家或地区代码为结尾的域名,如"CN"代表中国,"UK"代表英国。地理顶级域名一般由各个国家或地区负责管理。
二级域名:二级域名是以顶级域名为基础的地理域名,比喻中国的二级域有,.com.cn,.net.cn,.org.cn,.gd.cn等.子域名是其父域名的子域名,比喻父域名是abc.com,子域名就是www.abc.com或者*.abc.com.
一般来说,二级域名是域名的一条记录,比如alidiedie.com是一个域名,www.alidiedie.com是其中比较常用的记录,一般默认是用这个,但是类似*.alidiedie.com的域名全部称作是alidiedie.com的二级
4.HTTP部分的内容,类似于下面这样:
GET / HTTP/1.1
Host: www.google.com
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 6.1) ……
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: zh-CN,zh;q=0.8
Accept-Charset: GBK,utf-8;q=0.7,*;q=0.3
Cookie: … …
我们假定这个部分的长度为4960字节,它会被嵌在TCP数据包之中。
5 TCP协议
TCP数据包需要设置端口,接收方(Google)的HTTP端口默认是80,发送方(本机)的端口是一个随机生成的1024-65535之间的整数,假定为51775。
TCP数据包的标头长度为20字节,加上嵌入HTTP的数据包,总长度变为4980字节。
6 IP协议
然后,TCP数据包再嵌入IP数据包。IP数据包需要设置双方的IP地址,这是已知的,发送方是192.168.1.100(本机),接收方是172.194.72.105(Google)。
IP数据包的标头长度为20字节,加上嵌入的TCP数据包,总长度变为5000字节。
7 以太网协议
最后,IP数据包嵌入以太网数据包。以太网数据包需要设置双方的MAC地址,发送方为本机的网卡MAC地址,接收方为网关192.168.1.1的MAC地址(通过ARP协议得到)。
以太网数据包的数据部分,最大长度为1500字节,而现在的IP数据包长度为5000字节。因此,IP数据包必须分割成四个包。因为每个包都有自己的IP标头(20字节),所以四个包的IP数据包的长度分别为1500、1500、1500、560。
8 服务器端响应
经过多个网关的转发,Google的服务器172.194.72.105,收到了这四个以太网数据包。
根据IP标头的序号,Google将四个包拼起来,取出完整的TCP数据包,然后读出里面的”HTTP请求”,接着做出”HTTP响应”,再用TCP协议发回来。
本机收到HTTP响应以后,就可以将网页显示出来,完成一次网络通信。