[NOIP 2017普及组 No.4] 跳房子
[NOIP 2017普及组 No.4] 跳房子
【题目描述】
跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一。跳房子的游戏规则如下:
在地面上确定一个起点,然后在起点右侧画 n 个格子,这些格子都在同一条直线上。每个格子内有一个数字(整数),表示到达这个格子能得到的分数。玩家第一次从起点开始向右跳,跳到起点右侧的一个格子内。第二次再从当前位置继续向右跳,依此类推。规则规定:玩家每次都必须跳到当前位置右侧的一个格子内 。玩家可以在任意时刻结束游戏,获得的分数为曾经到达过的格子中的数字之和。
现在小 R 研发了一款弹跳机器人来参加这个游戏。但是这个机器人有一个非常严重的缺陷,它每次向右弹跳的距离只能为固定的 d。小 R 希望改进他的机器人,如果他花 g 个金币改进他的机器人,那么他的机器人灵活性就能增加 g,但是需要注意的是,每次弹跳的距离至少为 1。具体而言,当g < d时,他的机器人每次可以选择向右弹跳的距离为 d-g, d-g+1,d-g+2,…,d+g-2,d+g-1,d+g;否则(当g ≥ d时),他的机器人每次可以选择向右弹跳的距离为 1,2,3,…,d+g-2,d+g-1,d+g。
现在小 R 希望获得至少 k 分,请问他至少要花多少金币来改造他的机器人。
【输入格式】
第一行三个正整数 n,d,k,分别表示格子的数目,改进前机器人弹跳的固定距离,以及希望至少获得的分数。 相邻两个数之间用一个空格隔开。
接下来 n 行,每行两个正整数xi ,si ,分别表示起点到第i个格子的距离以及第i个格子的分数。 两个数之间用一个空格隔开。 保证xi按递增顺序输入。
【样例输入1】
7 4 10 2 6 5 -3 10 3 11 -3 13 1 17 6 20 2
【样例输出1】
2
【样例1说明】
花费 2 个金币改进后,小 R 的机器人依次选择的向右弹跳的距离分别为 2,3,5,3,4,3;
先后到达的位置分别为 2,5,10,13,17,20,对应 1, 2, 3, 5, 6, 7 这 6 个格子。
这些格子中的数字之和 15 即为小 R 获得的分数。
【样例输入2】
7 4 20 2 6 5 -3 10 3 11 -3 13 1 17 6 20 2
【样例输出2】
-1
【样例输出2说明】
由于样例中 7 个格子组合的最大可能数字之和只有 18 ,无论如何都无法获得 20 分。
【数据规模与约定】
本题共 10 组测试数据,每组数据 10 分。对于全部的数据满足1 ≤ n ≤ 500000,1 ≤ d ≤2000,1 ≤ xi,s<=10^9,|si|<10^5。
对于第1,2组测试数据,n<=10;
对于第3,4,5组测试数据,n<=500;
对于第6,7,8组测试数据,d=1。