ZooKeeper
- ZooKeeper 可以被用作注册中心、分布式锁;
- ZooKeeper 是 Hadoop 生态系统的一员;
- 构建 ZooKeeper 集群的时候,使用的服务器最好是奇数台
ZooKeeper 是一个开源的分布式协调服务,它的设计目标是将那些复杂且容易出错的分布式一致性服务封装起来,构成一个高效可靠的原语集,并以一系列简单易用的接口提供给用户使用。
ZooKeeper 为我们提供了高可用、高性能、稳定的分布式数据一致性解决方案,通常被用于实现诸如数据发布/订阅、负载均衡、命名服务、分布式协调/通知、集群管理、Master 选举、分布式锁和分布式队列等功能。
另外,ZooKeeper 将数据保存在内存中,性能是非常棒的。 在“读”多于“写”的应用程序中尤其地高性能,因为“写”会导致所有的服务器间同步状态。(“读”多于“写”是协调服务的典型场景)
. ZooKeeper 特点
- 顺序一致性: 从同一客户端发起的事务请求,最终将会严格地按照顺序被应用到 ZooKeeper 中去。
- 原子性: 所有事务请求的处理结果在整个集群中所有机器上的应用情况是一致的,也就是说,要么整个集群中所有的机器都成功应用了某一个事务,要么都没有应用。
- 单一系统映像 : 无论客户端连到哪一个 ZooKeeper 服务器上,其看到的服务端数据模型都是一致的。
- 可靠性: 一旦一次更改请求被应用,更改的结果就会被持久化,直到被下一次更改覆盖
- 分布式锁 : 通过创建唯一节点获得分布式锁,当获得锁的一方执行完相关代码或者是挂掉之后就释放锁。
- 命名服务 :可以通过 ZooKeeper 的顺序节点生成全局唯一 ID
- 数据发布/订阅 :通过 Watcher 机制 可以很方便地实现数据发布/订阅。当你将数据发布到 ZooKeeper 被监听的节点上,其他机器可通过监听 ZooKeeper 上节点的变化来实现配置的动态更新。
ZooKeeper 重要概念解读
ZooKeeper 数据模型采用层次化的多叉树形结构,每个节点上都可以存储数据,这些数据可以是数字、字符串或者是二级制序列。并且。每个节点还可以拥有 N 个子节点,最上层是根节点以“/”来代表。每个数据节点在 ZooKeeper 中被称为 znode,它是 ZooKeeper 中数据的最小单元。并且,每个 znode 都一个唯一的路径标识。
强调一句:ZooKeeper 主要是用来协调服务的,而不是用来存储业务数据的,所以不要放比较大的数据在 znode 上,ZooKeeper 给出的上限是每个结点的数据大小最大是 1M。
znode 分为 4 大类:
- 持久(PERSISTENT)节点 :一旦创建就一直存在即使 ZooKeeper 集群宕机,直到将其删除。
- 临时(EPHEMERAL)节点 :临时节点的生命周期是与 客户端会话(session) 绑定的,会话消失则节点消失 。并且,临时节点只能做叶子节点 ,不能创建子节点。
- 持久顺序(PERSISTENT_SEQUENTIAL)节点 :除了具有持久(PERSISTENT)节点的特性之外, 子节点的名称还具有顺序性。比如
/node1/app0000000001
、/node1/app0000000002
。 - 临时顺序(EPHEMERAL_SEQUENTIAL)节点 :除了具备临时(EPHEMERAL)节点的特性之外,子节点的名称还具有顺序性。
znode 数据结构
每个 znode 由 2 部分组成:
- stat :状态信息
- data : 节点存放的数据的具体内容
Stat 类中包含了一个数据节点的所有状态信息的字段,包括事务 ID-cZxid、节点创建时间-ctime 和子节点个数-numChildren 等等。
版本(version)
在前面我们已经提到,对应于每个 znode,ZooKeeper 都会为其维护一个叫作 Stat 的数据结构,Stat 中记录了这个 znode 的三个相关的版本:
- dataVersion :当前 znode 节点的版本号
- cversion : 当前 znode 子节点的版本
- aclVersion : 当前 znode 的 ACL 的版本。
ACL(权限控制)
ZooKeeper 采用 ACL(AccessControlLists)策略来进行权限控制,类似于 UNIX 文件系统的权限控制。
对于 znode 操作的权限,ZooKeeper 提供了以下 5 种:
- CREATE : 能创建子节点
- READ :能获取节点数据和列出其子节点
- WRITE : 能设置/更新节点数据
- DELETE : 能删除子节点
- ADMIN : 能设置节点 ACL 的权限
其中尤其需要注意的是,CREATE 和 DELETE 这两种权限都是针对 子节点 的权限控制
Watcher(事件监听器)
Watcher(事件监听器),是 ZooKeeper 中的一个很重要的特性。ZooKeeper 允许用户在指定节点上注册一些 Watcher,并且在一些特定事件触发的时候,ZooKeeper 服务端会将事件通知到感兴趣的客户端上去,该机制是 ZooKeeper 实现分布式协调服务的重要特性。
会话(Session)
Session 可以看作是 ZooKeeper 服务器与客户端的之间的一个 TCP 长连接,通过这个连接,客户端能够通过心跳检测与服务器保持有效的会话,也能够向 ZooKeeper 服务器发送请求并接受响应,同时还能够通过该连接接收来自服务器的 Watcher 事件通知。
Session 有一个属性叫做:sessionTimeout
,sessionTimeout
代表会话的超时时间。当由于服务器压力太大、网络故障或是客户端主动断开连接等各种原因导致客户端连接断开时,只要在sessionTimeout
规定的时间内能够重新连接上集群中任意一台服务器,那么之前创建的会话仍然有效。
另外,在为客户端创建会话之前,服务端首先会为每个客户端都分配一个 sessionID
。由于 sessionID
是 ZooKeeper 会话的一个重要标识,许多与会话相关的运行机制都是基于这个 sessionID
的,因此,无论是哪台服务器为客户端分配的 sessionID
,都务必保证全局唯一。
ZooKeeper 集群
为了保证高可用,最好是以集群形态来部署 ZooKeeper,这样只要集群中大部分机器是可用的(能够容忍一定的机器故障),那么 ZooKeeper 本身仍然是可用的。通常 3 台服务器就可以构成一个 ZooKeeper 集群了。
上图中每一个 Server 代表一个安装 ZooKeeper 服务的服务器。组成 ZooKeeper 服务的服务器都会在内存中维护当前的服务器状态,并且每台服务器之间都互相保持着通信。集群间通过 ZAB 协议(ZooKeeper Atomic Broadcast)来保持数据的一致性。
最典型集群模式: Master/Slave 模式(主备模式)。在这种模式中,通常 Master 服务器作为主服务器提供写服务,其他的 Slave 服务器从服务器通过异步复制的方式获取 Master 服务器最新的数据提供读服务。
但是,在 ZooKeeper 中没有选择传统的 Master/Slave 概念,而是引入了 Leader、Follower 和 Observer 三种角色
ZooKeeper 集群中的所有机器通过一个 Leader 选举过程 来选定一台称为 “Leader” 的机器,Leader 既可以为客户端提供写服务又能提供读服务。除了 Leader 外,Follower 和 Observer 都只能提供读服务。Follower 和 Observer 唯一的区别在于 Observer 机器不参与 Leader 的选举过程,也不参与写操作的“过半写成功”策略,因此 Observer 机器可以在不影响写性能的情况下提升集群的读性能。
当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,就会进入 Leader 选举过程,这个过程会选举产生新的 Leader 服务器。
ZooKeeper 集群为啥最好奇数台?
ZooKeeper 集群在宕掉几个 ZooKeeper 服务器之后,如果剩下的 ZooKeeper 服务器个数大于宕掉的个数的话整个 ZooKeeper 才依然可用。假如我们的集群中有 n 台 ZooKeeper 服务器,那么也就是剩下的服务数必须大于 n/2。
比如假如我们有 3 台,那么最大允许宕掉 1 台 ZooKeeper 服务器,如果我们有 4 台的的时候也同样只允许宕掉 1 台。 假如我们有 5 台,那么最大允许宕掉 2 台 ZooKeeper 服务器,如果我们有 6 台的的时候也同样只允许宕掉 2 台。
ZAB 协议和Paxos 算法
Paxos 算法应该可以说是 ZooKeeper 的灵魂了。但是,ZooKeeper 并没有完全采用 Paxos算法 ,而是使用 ZAB 协议作为其保证数据一致性的核心算法。另外,在ZooKeeper的官方文档中也指出,ZAB协议并不像 Paxos 算法那样,是一种通用的分布式一致性算法,它是一种特别为Zookeeper设计的崩溃可恢复的原子消息广播算法。
ZAB 协议介绍
ZAB(ZooKeeper Atomic Broadcast 原子广播) 协议是为分布式协调服务 ZooKeeper 专门设计的一种支持崩溃恢复的原子广播协议。 在 ZooKeeper 中,主要依赖 ZAB 协议来实现分布式数据一致性,基于该协议,ZooKeeper 实现了一种主备模式的系统架构来保持集群中各个副本之间的数据一致性。
ZAB 协议两种基本的模式:崩溃恢复和消息广播
- 崩溃恢复 :当整个服务框架在启动过程中,或是当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,ZAB 协议就会进入恢复模式并选举产生新的Leader服务器。当选举产生了新的 Leader 服务器,同时集群中已经有过半的机器与该Leader服务器完成了状态同步之后,ZAB协议就会退出恢复模式。其中,所谓的状态同步是指数据同步,用来保证集群中存在过半的机器能够和Leader服务器的数据状态保持一致。
- 消息广播 :当集群中已经有过半的Follower服务器完成了和Leader服务器的状态同步,那么整个服务框架就可以进入消息广播模式了。 当一台同样遵守ZAB协议的服务器启动后加入到集群中时,如果此时集群中已经存在一个Leader服务器在负责进行消息广播,那么新加入的服务器就会自觉地进入数据恢复模式:找到Leader所在的服务器,并与其进行数据同步,然后一起参与到消息广播流程中去。