B-微积分-Sigmoid函数

人工智能从入门到放弃完整教程目录:https://www.cnblogs.com/nickchen121/p/11686958.html

Sigmoid函数

一、Sigmoid函数详解

# Sigmoid函数详解图例
import numpy as np
import matplotlib.pyplot as plt

ax = plt.subplot(111)

ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))

x = np.linspace(-10, 10, 256)
y = 1 / (1 + np.exp(-x))
plt.plot(x, y, c='r', label='Sigmoid')

# 描绘y=0.5和y=1.0两条直线
plt.yticks([0.0,0.5,1.0])
ax = plt.gca()
ax.yaxis.grid(True)

plt.xlabel('z')
plt.ylabel('g(z)')
plt.legend()
plt.show()

上图为Sigmoid函数图像,可以看出当\(z\)趋于正无穷时,\(g(z)\)趋于1;当\(z\)趋于负无穷时,\(g(z)\)趋于0。

posted @ 2019-10-16 17:07  B站-水论文的程序猿  阅读(1224)  评论(0编辑  收藏  举报