人工智能从入门到放弃完整教程目录:https://www.cnblogs.com/nickchen121/p/11686958.html
Softmax回归
Softmax回归属于多分类\(c_1,c_2,\ldots,c_k\)模型,它通过估计某个样本属于\(k\)个类别的各自的概率达到多分类的目的。它是逻辑回归的一般形式,即当\(k=2\)的时候退化为逻辑回归。
一、Softmax回归详解
1.1 让步比
由于softmax回归更多的是逻辑回归的多分类形式,此处只给出softmax的定义及公式。
让步比可以理解成有利于某一特定事件的概率,可以定义为
\[{\frac{p}{1-p}}
\]
在已知二分类问题的情况下每个分类的概率分别为\(\hat{y_i}\)和\(1-\hat{y_i}\),可以定义logit函数,即让步比的对数形式(log-odds)为
\[\begin{align}
\log{it}(\hat{y_i}) & = \log{\frac{p(y=1|x,\omega)}{p(y=0|x,\omega)}} \\
& = \log{\frac{\hat{y_i}}{1-\hat{y_i}}} \\
& = \log{\frac{{\frac{1}{1+e^{-\omega^Tx}}}}{{\frac{-\omega^Tx}{1+e^{-\omega^Tx}}}}} \\
& = \omega^Tx
\end{align}
\]
其中\(\log{it}(p)\)函数等于事件发生的概率除以不发生的概率取对数,即表示特征值和对数概率之间的线性关系。
1.2 不同类之间的概率分布
现在假设有一个\(k\)元分类模型,即样本的输出值为\(c_1,c_2,\ldots,c_k\),对于某一个实例预测为\(c_i\)样本的概率总和为\(1\),即
\[\sum_{i=1}^k p(y=i|x,\omega) =1
\]
该\(k\)元分类模型依据让步比的对数形式可以得到
\[\begin{align}
& \ln{\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} = {\omega_1^T}x \\
& \ln{\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} = {\omega_2^T}x \\
& \cdots \\
& \ln{\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} = {\omega_{k-1}^T}x \\
& \ln{\frac{p(y=k|x,\omega)}{p(y=k|x,\omega)}} = {\omega_{k}^T}x = 0 \\
\end{align}
\]
通过对上述公式化简可得
\[\begin{align}
& {\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_1^T}x} \\
& {\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_2^T}x} \\
& \cdots \\
& {\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_{k-1}^T}x} \\
\end{align}
\]
\[\begin{align}
e^{{\omega_1^T}x}+e^{{\omega_1^T}x}+\cdots+e^{{\omega_{k-1}^T}x} & = \sum_{i=1}^{k-1} e^{{\omega_i^T}x} \\
& = {\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} + {\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} + \cdots + {\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} \\
& = {\frac{p(y=1|x,\omega)+p(y=2|x,\omega)+\cdots+p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} \\
& = {\frac{1-p(y=k|x,\omega)}{p(y=k|x,\omega)}} \\
\end{align}
\]
既得\(p(y=k|x,\omega)={\frac{1}{1+\sum_{i=1}^{k-1} e^{{\omega_i^T}x}}}\)
通过\(p(y=k|x,\omega)\)即可推出\(p(y=j|x,\omega)={\frac{e^{{\omega_j^T}x}}{1+\sum_{t=1}^{k-1} e^{{\omega_t^T}x}}} \quad j=1,2,\ldots,k-1\),因此可以得到\(k\)元分类模型的\(k\)个类的概率分布为
\[p(c=k|x,\omega)=
\begin{cases}
{\frac{e^{{\omega_j^T}x}}{1+\sum_{t=1}^{k-1} e^{{\omega_t^T}x}}} \quad j=1,2,\ldots,k-1 \quad if类别为1,2,\ldots,k-1 \\
{\frac{1}{1+\sum_{i=1}^{k-1} e^{{\omega_i^T}x}}} \quad if类别为k \\
\end{cases}
\]
1.3 目标函数
上一节基于\({\omega_k^T}x=0\)计算出每个分类的概率,然而现实中往往\({\omega_k^T}x\neq0\),可以使用上一节的推导过程假设\({\omega_k^T}x\neq0\)则可以推导出\(k\)元分类模型的\(k\)个类的概率分布为
\[p(c=k|x,\omega)={\frac{e^{{\omega_j^T}x}}{\sum_{t=1}^{k} e^{{\omega_t^T}x}}} \quad j=1,2,\ldots,k
\]
通过上述\(k\)个类别的概率分布可得似然函数
\[\begin{align}
L(\omega) & = \prod_{i=1}^m \prod_{k=1}^k p(c=k|x_i,\omega)^{{y_i}_k} \\
& = \prod_{i=1}^m \prod_{k=1}^k ({\frac{e^{({\omega_k^T}x_i)}}{\sum_{t=1}^k e^{{\omega_t^T}x_i}}})^{y_ik}
\end{align}
\]
通过似然函数即可得对数似然函数即目标函数(注:该目标函数与交叉熵损失函数的形式一致,二元逻辑回归可以理解为交叉熵损失函数两个类变量的特殊形式,Softmax回归可以理解成交叉熵损失函数的多个类变量的特殊形式,交叉熵为
\[\begin{align}
J_m(\omega) & = \log{L(\omega)} \\
& = \sum_{i=1}^m\sum_{k=1}^k {y_i}_k ({\omega_k^T}x_i - \log\sum_{t=1}^k e^{({\omega_t^T}x_i)})
\end{align}
\]
1.4 目标函数最大化
由于Softmax回归和逻辑回归都可以使用梯度上升法使得目标函数最大化,并且方式一样,因此此处只给出目标函数对参数的偏导。
\[{\frac{\partial{J(\omega)}}{\partial\omega_k}}=\sum_{i=1}^m ({y_i}_k-p({y_i}_k|x_i,\omega_k))x_i
\]
二、Softmax回归优缺点
2.1 优点
- 基于模型本身可以处理多分类问题
2.2 缺点
- 计算极其复杂
\(2^2\)