损失函数及其梯度

TensorFlow2教程完整教程目录(更有python、go、pytorch、tensorflow、爬虫、人工智能教学等着你):https://www.cnblogs.com/nickchen121/p/10840284.html

Typical Loss

  • Mean Squared Error
  • Cross Entropy Loss

binary
multi-class
+softmax

MSE

  • \(loss = \sum[y-(xw+b)]^2\)
  • \(L_{2-norm} = ||y-(xw+b)||_2\)
  • \(loss = norm(y-(xw+b))^2\)

Derivative

  • \(loss = \sum[y-f_\theta(x)]^2\)
  • \(\frac{\nabla\text{loss}}{\nabla{\theta}}=2\sum{[y-f_\theta(x)]}*\frac{\nabla{f_\theta{(x)}}}{\nabla{\theta}}\)

MSE Gradient

import tensorflow as tf
x = tf.random.normal([2, 4])
w = tf.random.normal([4, 3])
b = tf.zeros([3])
y = tf.constant([2, 0])

with tf.GradientTape() as tape:
    tape.watch([w, b])
    prob = tf.nn.softmax(x @ w + b, axis=1)
    loss = tf.reduce_mean(tf.losses.MSE(tf.one_hot(y, depth=3), prob))

grads = tape.gradient(loss, [w, b])
grads[0]
<tf.Tensor: id=92, shape=(4, 3), dtype=float32, numpy=
array([[ 0.01156707, -0.00927749, -0.00228957],
       [ 0.03556816, -0.03894382,  0.00337564],
       [-0.02537526,  0.01924876,  0.00612648],
       [-0.0074787 ,  0.00161515,  0.00586352]], dtype=float32)>
grads[1]
<tf.Tensor: id=90, shape=(3,), dtype=float32, numpy=array([-0.01552947,  0.01993286, -0.00440337], dtype=float32)>

Softmax

  • soft version of max
  • 大的越来越大,小的越来越小、越密集

Derivative

\[p_i = \frac{e^{a_i}}{\sum_{k=1}^Ne^{a_k}} \]

  • i=j

\[\frac{\partial{p_i}}{\partial{a_j}}=\frac{\partial{\frac{e^{a_i}}{\sum_{k=1}^Ne^{a_k}}}}{{\partial{a_j}}} = p_i(1-p_j) \]

  • \(i\neq{j}\)

\[\frac{\partial{p_i}}{\partial{a_j}}=\frac{\partial{\frac{e^{a_i}}{\sum_{k=1}^Ne^{a_k}}}}{{\partial{a_j}}} = -p_j*p_i \]

x = tf.random.normal([2, 4])
w = tf.random.normal([4, 3])
b = tf.zeros([3])
y = tf.constant([2, 0])

with tf.GradientTape() as tape:
    tape.watch([w, b])
    logits =x @ w + b
    loss = tf.reduce_mean(
        tf.losses.categorical_crossentropy(tf.one_hot(y, depth=3),
                                           logits,
                                           from_logits=True))

grads = tape.gradient(loss, [w, b])
grads[0]
<tf.Tensor: id=226, shape=(4, 3), dtype=float32, numpy=
array([[-0.38076094,  0.33844548,  0.04231545],
       [-1.0262716 , -0.6730384 ,  1.69931   ],
       [ 0.20613424, -0.50421923,  0.298085  ],
       [ 0.5800004 , -0.22329211, -0.35670823]], dtype=float32)>
grads[1]
<tf.Tensor: id=224, shape=(3,), dtype=float32, numpy=array([-0.3719653 ,  0.53269935, -0.16073406], dtype=float32)>
posted @ 2019-05-22 16:41  B站-水论文的程序猿  阅读(3654)  评论(0编辑  收藏  举报