梯度下降简介

TensorFlow2教程完整教程目录(更有python、go、pytorch、tensorflow、爬虫、人工智能教学等着你):https://www.cnblogs.com/nickchen121/p/10840284.html

Outline

  • What's Gradient
  • What does it mean
  • How to Search
  • AutoGrad

What's Gradient

  • 导数,derivative,抽象表达
  • 偏微分,partial derivative,沿着某个具体的轴运动
  • 梯度,gradient,向量

\[\nabla{f} = (\frac{\partial{f}}{\partial{x_1}};\frac{\partial{f}}{{\partial{x_2}}};\cdots;\frac{\partial{f}}{{\partial{x_n}}}) \]

What does it mean?

  • 箭头的方向表示梯度的方向
  • 箭头模的大小表示梯度增大的速率

How to search

  • 沿着梯度下降的反方向搜索

For instance

\[\theta_{t+1}=\theta_t-\alpha_t\nabla{f(\theta_t)} \]

AutoGrad

  • With Tf.GradientTape() as tape:

Build computation graph
\(loss = f_\theta{(x)}\)

  • [w_grad] = tape.gradient(loss,[w])
import tensorflow as tf
w = tf.constant(1.)
x = tf.constant(2.)
y = x * w
with tf.GradientTape() as tape:
    tape.watch([w])
    y2 = x * w
grad1 = tape.gradient(y, [w])
grad1
[None]
with tf.GradientTape() as tape:
    tape.watch([w])
    y2 = x * w
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=30, shape=(), dtype=float32, numpy=2.0>]
try:
    grad2 = tape.gradient(y2, [w])
except Exception as e:
    print(e)
GradientTape.gradient can only be called once on non-persistent tapes.
  • 永久保存grad
with tf.GradientTape(persistent=True) as tape:
    tape.watch([w])
    y2 = x * w
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=35, shape=(), dtype=float32, numpy=2.0>]
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=39, shape=(), dtype=float32, numpy=2.0>]

\(2^{nd}\)-order

  • y = xw + b
  • \(\frac{\partial{y}}{\partial{w}} = x\)
  • \(\frac{\partial^2{y}}{\partial{w^2}} = \frac{\partial{y'}}{\partial{w}} = \frac{\partial{X}}{\partial{w}} = None\)
with tf.GradientTape() as t1:
    with tf.GradientTape() as t2:
        y = x * w + b
    dy_dw, dy_db = t2.gradient(y, [w, b])

d2y_dw2 = t1.gradient(dy_dw, w)
posted @ 2019-05-21 18:10  B站-水论文的程序猿  阅读(1761)  评论(0编辑  收藏  举报