梯度下降简介
TensorFlow2教程完整教程目录(更有python、go、pytorch、tensorflow、爬虫、人工智能教学等着你):https://www.cnblogs.com/nickchen121/p/10840284.html
Outline
- What's Gradient
- What does it mean
- How to Search
- AutoGrad
What's Gradient
- 导数,derivative,抽象表达
- 偏微分,partial derivative,沿着某个具体的轴运动
- 梯度,gradient,向量
\[\nabla{f} = (\frac{\partial{f}}{\partial{x_1}};\frac{\partial{f}}{{\partial{x_2}}};\cdots;\frac{\partial{f}}{{\partial{x_n}}})
\]
What does it mean?
- 箭头的方向表示梯度的方向
- 箭头模的大小表示梯度增大的速率
How to search
- 沿着梯度下降的反方向搜索
For instance
\[\theta_{t+1}=\theta_t-\alpha_t\nabla{f(\theta_t)}
\]
AutoGrad
- With Tf.GradientTape() as tape:
Build computation graph
\(loss = f_\theta{(x)}\)
- [w_grad] = tape.gradient(loss,[w])
import tensorflow as tf
w = tf.constant(1.)
x = tf.constant(2.)
y = x * w
with tf.GradientTape() as tape:
tape.watch([w])
y2 = x * w
grad1 = tape.gradient(y, [w])
grad1
[None]
with tf.GradientTape() as tape:
tape.watch([w])
y2 = x * w
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=30, shape=(), dtype=float32, numpy=2.0>]
try:
grad2 = tape.gradient(y2, [w])
except Exception as e:
print(e)
GradientTape.gradient can only be called once on non-persistent tapes.
- 永久保存grad
with tf.GradientTape(persistent=True) as tape:
tape.watch([w])
y2 = x * w
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=35, shape=(), dtype=float32, numpy=2.0>]
grad2 = tape.gradient(y2, [w])
grad2
[<tf.Tensor: id=39, shape=(), dtype=float32, numpy=2.0>]
\(2^{nd}\)-order
- y = xw + b
- \(\frac{\partial{y}}{\partial{w}} = x\)
- \(\frac{\partial^2{y}}{\partial{w^2}} = \frac{\partial{y'}}{\partial{w}} = \frac{\partial{X}}{\partial{w}} = None\)
with tf.GradientTape() as t1:
with tf.GradientTape() as t2:
y = x * w + b
dy_dw, dy_db = t2.gradient(y, [w, b])
d2y_dw2 = t1.gradient(dy_dw, w)