测试(张量)- 实战

目录

    TensorFlow2教程完整教程目录(更有python、go、pytorch、tensorflow、爬虫、人工智能教学等着你):https://www.cnblogs.com/nickchen121/p/10840284.html

    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import datasets
    import os
    
    # do not print irrelevant information
    # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    # x: [60k,28,28], [10,28,28]
    # y: [60k], [10k]
    (x, y), (x_test, y_test) = datasets.mnist.load_data()
    
    # transform Tensor
    # x: [0~255] ==》 [0~1.]
    x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
    y = tf.convert_to_tensor(y, dtype=tf.int32)
    
    x_test = tf.convert_to_tensor(x_test, dtype=tf.float32) / 255.
    y_test = tf.convert_to_tensor(y_test, dtype=tf.int32)
    
    f'x.shape: {x.shape}, y.shape: {y.shape}, x.dtype: {x.dtype}, y.dtype: {y.dtype}'
    
    "x.shape: (60000, 28, 28), y.shape: (60000,), x.dtype: <dtype: 'float32'>, y.dtype: <dtype: 'int32'>"
    
    f'min_x: {tf.reduce_min(x)}, max_x: {tf.reduce_max(x)}'
    
    'min_x: 0.0, max_x: 1.0'
    
    f'min_y: {tf.reduce_min(y)}, max_y: {tf.reduce_max(y)}'
    
    'min_y: 0, max_y: 9'
    
    # batch of 128
    train_db = tf.data.Dataset.from_tensor_slices((x, y)).batch(128)
    test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(128)
    train_iter = iter(train_db)
    sample = next(train_iter)
    f'batch: {sample[0].shape,sample[1].shape}'
    
    'batch: (TensorShape([128, 28, 28]), TensorShape([128]))'
    
    # [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
    # [dim_in,dim_out],[dim_out]
    w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
    b1 = tf.Variable(tf.zeros([256]))
    w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
    b2 = tf.Variable(tf.zeros([128]))
    w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
    b3 = tf.Variable(tf.zeros([10]))
    
    # learning rate
    lr = 1e-3
    
    for epoch in range(10):  # iterate db for 10
        # tranin every train_db
        for step, (x, y) in enumerate(train_db):
            # x: [128,28,28]
            # y: [128]
    
            # [b,28,28] ==> [b,28*28]
            x = tf.reshape(x, [-1, 28 * 28])
    
            with tf.GradientTape(
            ) as tape:  # only data types of tf.variable are logged
                # x: [b,28*28]
                # h1 = x@w1 + b1
                # [b,784]@[784,256]+[256] ==> [b,256] + [256] ==> [b,256] + [b,256]
                h1 = x @ w1 + tf.broadcast_to(b1, [x.shape[0], 256])
                h1 = tf.nn.relu(h1)
                # [b,256] ==> [b,128]
                # h2 = x@w2 + b2  # b2 can broadcast automatic
                h2 = h1 @ w2 + b2
                h2 = tf.nn.relu(h2)
                # [b,128] ==> [b,10]
                out = h2 @ w3 + b3
    
                # compute loss
                # out: [b,10]
                # y:[b] ==> [b,10]
                y_onehot = tf.one_hot(y, depth=10)
    
                # mse = mean(sum(y-out)^2)
                # [b,10]
                loss = tf.square(y_onehot - out)
                # mean:scalar
                loss = tf.reduce_mean(loss)
    
            # compute gradients
            grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
            # w1 = w1 - lr * w1_grad
            # w1 = w1 - lr * grads[0]  # not in situ update
            # in situ update
            w1.assign_sub(lr * grads[0])
            b1.assign_sub(lr * grads[1])
            w2.assign_sub(lr * grads[2])
            b2.assign_sub(lr * grads[3])
            w3.assign_sub(lr * grads[4])
            b3.assign_sub(lr * grads[5])
    
            if step % 100 == 0:
                print(f'epoch:{epoch}, step: {step}, loss:{float(loss)}')
                
        # [w1,b1,w2,b2,w3,b3]
        total_correct, total_num = 0, 0
        for step, (x, y) in enumerate(test_db):
            # [b,28,28] ==> [b,28*28]
            x = tf.reshape(x, [-1, 28 * 28])
    
            # [b,784] ==> [b,256] ==> [b,128] ==> [b,10]
            h1 = tf.nn.relu(x @ w1 + b1)
            h2 = tf.nn.relu(h1 @ w2 + b2)
            out = h2 @ w3 + b3
    
            # out: [b,10] ~ R
            # prob: [b,10] ~ (0,1)
            prob = tf.nn.softmax(out, axis=1)
            # [b,10] ==> [b]
            pred = tf.argmax(prob, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            # y: [b]
            # [b], int32
            correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
            correct = tf.reduce_sum(correct)
    
            total_correct += int(correct)
            total_num += x.shape[0]
        acc = total_correct / total_num
        print(f'test acc: {acc}')
    
    epoch:0, step: 0, loss:0.4985736012458801
    epoch:0, step: 100, loss:0.22939381003379822
    epoch:0, step: 200, loss:0.2018660604953766
    epoch:0, step: 300, loss:0.18181894719600677
    epoch:0, step: 400, loss:0.1831897795200348
    test acc: 0.1153
    epoch:1, step: 0, loss:0.1674182116985321
    epoch:1, step: 100, loss:0.17186065018177032
    epoch:1, step: 200, loss:0.16210347414016724
    epoch:1, step: 300, loss:0.1499405801296234
    epoch:1, step: 400, loss:0.15070970356464386
    test acc: 0.1769
    epoch:2, step: 0, loss:0.14020009338855743
    epoch:2, step: 100, loss:0.14754906296730042
    epoch:2, step: 200, loss:0.13924123346805573
    epoch:2, step: 300, loss:0.1308508813381195
    epoch:2, step: 400, loss:0.1306917369365692
    test acc: 0.235
    epoch:3, step: 0, loss:0.12297296524047852
    epoch:3, step: 100, loss:0.13165466487407684
    epoch:3, step: 200, loss:0.12420644611120224
    epoch:3, step: 300, loss:0.1179303377866745
    epoch:3, step: 400, loss:0.11716334521770477
    test acc: 0.2927
    epoch:4, step: 0, loss:0.11098697036504745
    epoch:4, step: 100, loss:0.12046296894550323
    epoch:4, step: 200, loss:0.11333265155553818
    epoch:4, step: 300, loss:0.10868857055902481
    epoch:4, step: 400, loss:0.10756760835647583
    test acc: 0.3386
    epoch:5, step: 0, loss:0.1022152453660965
    epoch:5, step: 100, loss:0.1120707243680954
    epoch:5, step: 200, loss:0.10497119277715683
    epoch:5, step: 300, loss:0.10168357938528061
    epoch:5, step: 400, loss:0.10033649206161499
    test acc: 0.379
    epoch:6, step: 0, loss:0.09566861391067505
    epoch:6, step: 100, loss:0.10548736900091171
    epoch:6, step: 200, loss:0.09834134578704834
    epoch:6, step: 300, loss:0.0961376205086708
    epoch:6, step: 400, loss:0.09474694728851318
    test acc: 0.4168
    epoch:7, step: 0, loss:0.09054075181484222
    epoch:7, step: 100, loss:0.1001550704240799
    epoch:7, step: 200, loss:0.09303966909646988
    epoch:7, step: 300, loss:0.09163998067378998
    epoch:7, step: 400, loss:0.09031815826892853
    test acc: 0.453
    epoch:8, step: 0, loss:0.08635123074054718
    epoch:8, step: 100, loss:0.0957597866654396
    epoch:8, step: 200, loss:0.08867798745632172
    epoch:8, step: 300, loss:0.08790989965200424
    epoch:8, step: 400, loss:0.08668653666973114
    test acc: 0.4831
    epoch:9, step: 0, loss:0.08282895386219025
    epoch:9, step: 100, loss:0.09203790128231049
    epoch:9, step: 200, loss:0.0850382000207901
    epoch:9, step: 300, loss:0.08473993837833405
    epoch:9, step: 400, loss:0.0835738554596901
    test acc: 0.5065
    
    
    

    15 测试(张量)- 实战

    posted @ 2019-05-16 18:06  B站-水论文的程序猿  阅读(1182)  评论(0编辑  收藏  举报