Broadcasting

TensorFlow2教程完整教程目录(更有python、go、pytorch、tensorflow、爬虫、人工智能教学等着你):https://www.cnblogs.com/nickchen121/p/10840284.html

Broadcasting

  • expand(扩展数据)
  • without copying data(不复制数据)
  • tf.broadcast_to

Key idea

  1. Insert 1 dim ahead if needed
  2. Expand dims with size 1 to same size
  3. example:
  • [4,16,16,32]
  • 
    

\[32\]


```default
* \[4,16,16,32\]
* \[1,1,1,32\]
* \[4,16,16,32\]
* \[4,16,16,32\]

![](images.cnblogs.com/cnblogs_com/nickchen121/1461163/o_05-Broadcasting-broadcast%E7%A4%BA%E4%BE%8B.jpg)


## How to understand?


* When it has no axis

Create a new concepy
\[classes, students, scores\] + \[scores\]
* When it has dim of size 1

Treat it shared by all
\[classes,students,scores\] + \[students,1\]

Broadcasting可以理解成把维度分成大维度和小维度,小维度较为具体,大维度更加抽象。也就是小维度针对某个示例,然后让这个示例通用语大维度。


## Why broadcasting?


1. for real demanding

\[classes, students, scores\]
Add bias for every student: +5 score
\[4,32,8\] + \[4,32,8\]
\[4,32,8\] + \[5.0\]
6. memory consumption

\[4,32,8\] -> 1024
bias = \[8\]: \[5.0,5.0,5.0,...\] -> 8


## Broadcastable?


* Match from Last dim!

if current dim=1, expand to same
if either has no dim, insert one dim and expand to same
otherwise, Not Broadcastable
* \[4,32,14,14\]
* \[1,32,1,1\] -> \[4,32,14,14\] √
* \[14,14\] -> \[1,1,14,14\] -> \[4,32,14,14\] √
* \[2,32,14,14\] ×
* \[3\] √
* \[32,32,1\] √
* \[4,1,1,1\] √


​```python
import tensorflow as tf
x = tf.random.normal([4,32,32,3])
x.shape
TensorShape([4, 32, 32, 3])
(x+tf.random.normal([3])).shape
TensorShape([4, 32, 32, 3])
(x+tf.random.normal([32,32,1])).shape
TensorShape([4, 32, 32, 3])
(x+tf.random.normal([4,1,1,1])).shape
TensorShape([4, 32, 32, 3])
try:
    (x+tf.random.normal([1,4,1,1])).shape
except Exception as e:
    print(e)
Incompatible shapes: [4,32,32,3] vs. [1,4,1,1] [Op:Add] name: add/
(x+tf.random.normal([4,1,1,1])).shape
TensorShape([4, 32, 32, 3])
b = tf.broadcast_to(tf.random.normal([4,1,1,1]),[4,32,32,3])
b.shape
TensorShape([4, 32, 32, 3])

Broadcast VS Tile

a = tf.ones([3,4])
a.shape
TensorShape([3, 4])
a1 = tf.broadcast_to(a,[2,3,4])
a1.shape
TensorShape([2, 3, 4])
a2 = tf.expand_dims(a,axis=0)  # 0前插入一维
a2.shape
TensorShape([1, 3, 4])
a2 = tf.tile(a2,[2,1,1])  # 复制一维2次,复制二、三维1次
a2.shape
TensorShape([2, 3, 4])
posted @ 2019-05-11 18:05  B站-水论文的程序猿  阅读(1519)  评论(0编辑  收藏  举报