Segment Anything(SAM)环境安装&代码调试
引子
Segment Anything是前阵子大火的CV领域模型,之前也有尝试,只是没有整理。OK,让我们开始吧
一、拉取下载docker镜像
docker pull cnstark/pytorch:2.0.1-py3.9.17-cuda11.8.0-ubuntu20.04
二、安装SAM环境
docker run -it --gpus=all -v /datas/work/zzq:/workspace 8fd9e4c5e7bc bash
pip install opencv-python pycocotools matplotlib onnxruntime onnx -i https://pypi.tuna.tsinghua.edu.cn/simple
cd /workspace/SAM/segment-anything
python scripts/amg.py --checkpoint sam_vit_h_4b8939.pth --input 170425986850.png --output ./
apt-get update && apt-get install libgl1
apt-get install libglib2.0-0
pip install segment_anything
python scripts/amg.py --checkpoint sam_vit_h_4b8939.pth --model-type vit_h --input 170425986850.png --output ./
三、可视化效果查看
python scripts/mask_generator.py
四、mask_generator.py代码
1 import numpy as np 2 import torch 3 import cv2 4 5 def apply_color_mask(image, mask, color, color_dark = 0.5):#对掩体进行赋予颜色 6 for c in range(3): 7 image[:, :, c] = np.where(mask == 1, image[:, :, c] * (1 - color_dark) + color_dark * color[c], image[:, :, c]) 8 return image 9 10 11 12 13 image_origin = cv2.imread('test_img/20240108094728.jpg') 14 image = cv2.cvtColor(image_origin, cv2.COLOR_BGR2RGB) 15 import sys 16 sys.path.append("..") 17 from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor 18 19 sam_checkpoint = "sam_vit_h_4b8939.pth" 20 model_type = "vit_h" 21 22 device = "cuda" 23 24 sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) 25 sam.to(device=device) 26 27 mask_generator = SamAutomaticMaskGenerator(sam) 28 masks = mask_generator.generate(image) 29 30 print(len(masks)) 31 print(masks[0].keys()) 32 33 34 image_select = image_origin.copy() 35 for i in range(len(masks)): 36 color = tuple(np.random.randint(0, 256, 3).tolist())#随机列表颜色,就是 37 selected_mask=masks[i]['segmentation'] 38 selected_image = apply_color_mask(image_select,selected_mask, color) 39 cv2.imwrite("res.jpg", selected_image)