HDU 6074 - Phone Call | 2017 Multi-University Training Contest 4

看标程的代码这么短,看我的....

难道是静态LCA模板太长了? 

/*
HDU 6074 - Phone Call [ LCA,并查集 ]  |  2017 Multi-University Training Contest 4
题意:
	给一棵树,定义集合S(u,v)为u到v路径上所有的点
	给出 m 个 <S(u1,v1)|S(u2,v2) , w > ,意思为集合里面的点互相距离为 w 
	求 1 能到的所有点和该生成树的最小权值
分析:
	将所有线路按代价从小到大排序,对于每条线路(a,b,c,d)
		分别把S(a,b)和S(c,d)合并到 LCA,最后再把两个 LCA 合并即可
	再用f(i)表示i向上第一个与i不在同一个连通块的点, 就可用并查集压缩路径
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 100005;
const int Q = 200005;
vector<int> G[N];
namespace LCA{
    struct Query {
        int v, q;
    }; vector <Query> query[N];
    int ans[Q], f[N], vis[N];
    int sf(int x) {
        return x == f[x] ? x : f[x] = sf(f[x]);
    }
    void init() {
        memset(ans, -1, sizeof(ans));
        for (int i = 0; i < N; i++) {
            vis[i] = 0;
            f[i] = i;
            query[i].clear();
        }
    }
    void adq(int u, int v, int id) {
        query[u].push_back(Query{v, id});
        query[v].push_back(Query{u, id});
    }
    void LCA(int u) {
        f[u] = u;
        vis[u] = 1;
        for (auto& x : query[u]) {
            if (vis[x.v] && ans[x.q] == -1)
                ans[x.q] = sf(x.v);
        }
        for (auto& v : G[u]) {
            if (vis[v]) continue;
            LCA(v);
            f[v] = u;
        }
    }
}
int pre[N];
void dfs(int u, int fa) {
    pre[u] = fa;
    for (auto v : G[u]) {
        if (v == fa) continue;
        dfs(v, u);
    }
}
int f[N], num[N];
LL res[N];
int sf(int x){
    return x == f[x] ? x : f[x] = sf(f[x]);
}
int same[N];
int Same(int x) {
    return x == same[x] ? x : same[x] = Same(same[x]);
}
int w;
void join(int a, int b){
    a = sf(a), b = sf(b);
    if (a == b) return;
    f[b] = a;
    num[a] += num[b];
    res[a] += res[b] + w;
}
struct Node {
    int a1, b1, a2, b2, w;
    int c1, c2;
}e[N];
bool cmp(Node a, Node b) {
    return a.w < b.w;
}
void solve(int a, int fa) {
    while (Same(a) != Same(fa)) {
        a = Same(a);
        join(pre[a], a);
        same[a] = pre[a];
    }
}
int t, n, m;
int main() {
    scanf("%d", &t);
    while (t--) {
        for (int i = 0; i < N; i++) G[i].clear();
        LCA::init();
        scanf("%d%d", &n, &m);
        for (int i = 1; i < n; i++) {
            int u, v; scanf("%d%d", &u, &v);
            G[u].push_back(v);
            G[v].push_back(u);
        }
        int Q = 0;
        for (int i = 1; i <= m; i++) {
            scanf("%d%d%d%d%d", &e[i].a1, &e[i].b1, &e[i].a2, &e[i].b2, &e[i].w);
            e[i].c1 = ++Q;
            LCA::adq(e[i].a1, e[i].b1, Q);
            e[i].c2 = ++Q;
            LCA::adq(e[i].a2, e[i].b2, Q);
        }
        LCA::LCA(1);
        for (int i = 1; i <= m; i++) {
            e[i].c1 = LCA::ans[e[i].c1];
            e[i].c2 = LCA::ans[e[i].c2];
        }
        dfs(1, 1);
        sort(e+1, e+m+1, cmp);
        for (int i = 1; i <= n; i++) {
            f[i] = same[i] = i;
            num[i] = 1;
            res[i] = 0;
        }
        for (int i = 1; i <= m; i++) {
            w = e[i].w;
            solve(e[i].a1, e[i].c1);
            solve(e[i].b1, e[i].c1);
            solve(e[i].a2, e[i].c2);
            solve(e[i].b2, e[i].c2);
            join(e[i].c1, e[i].c2);
        }
        printf("%d %lld\n", num[sf(1)], res[sf(1)]);
    }
}

  

posted @ 2017-08-07 22:44  nicetomeetu  阅读(201)  评论(0编辑  收藏  举报