CodeForces - 837E - Vasya's Function | Educational Codeforces Round 26

/*
CodeForces - 837E - Vasya's Function [ 数论 ]  |  Educational Codeforces Round 26
题意:
	f(a, 0) = 0;
	f(a, b) = 1 + f(a, b-gcd(a, b));
	求 f(a, b) , a,b <= 1e12
分析:
	b 每次减 gcd(a, b) 等价于 b/gcd(a,b) 每次减 1
	减到什么时候呢,就是  b/gcd(a,b)-k 后 不与 a 互质
	可先将 a 质因数分解,b能除就除,不能除就减到最近的a的因子的倍数,即模拟整个过程
	
	由于 a 至多只有 64个因子 (a <= 2^64) ,复杂度挺低
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL INF = 1e18;
const int N = 1e5;
LL a, b;
map<LL, int> mp;
map<LL, int>::iterator it;
void GetFactors(LL x)
{
    for (LL i = 2; i*i <= x; i++)
    {
        if (x % i == 0)
        {
            while (x % i == 0)
            {
                mp[i]++;
                x /= i;
            }
        }
    }
    if (x != 1) mp[x] = 1;
}
int main()
{
    scanf("%lld%lld", &a, &b);
    GetFactors(a);
    LL ans = 0;
    while (b)
    {
        for (it = mp.begin(); it != mp.end(); it++)
        {
            while ( (it->second) > 0 && b % (it->first) == 0)
            {
                b /= it->first;
                --(it->second);
            }
        }
        LL mi = INF, x = -1;
        for (it = mp.begin(); it != mp.end(); it++)
        {
            if ((it->second) > 0 && b % (it->first) < mi)
            {
                mi = b % (it->first);
                x = it->first;
            }
        }
        if (x == -1)
        {
            ans += b; break;
        }
        ans += mi;
        b -= mi;
    }
    printf("%lld\n", ans);
}

  

posted @ 2017-08-06 04:17  nicetomeetu  阅读(226)  评论(0编辑  收藏  举报