HDU 6057 - Kanade's convolution | 2017 Multi-University Training Contest 3
/* HDU 6057 - Kanade's convolution [ FWT ] | 2017 Multi-University Training Contest 3 题意: 给定两个序列 A[0...2^m-1], B[0...2^m-1] 求 C[0...2^m-1] ,满足: C[k] = ∑[i&j==k] A[i^j] * B[i|j] m <= 19 分析: 看C[k]的形式与集合卷积的形式接近,故转化式子时主要向普通的集合卷积式方向靠 与三种位运算都相关的结论是 : i^j + i&j = i|j 设 x = i^j, y = i|j,则显然 k = y-x,且 k 与 x 互成关于 y 的补集,即 k = x^y 再来关心给定(x,y),符合 x = i^j, y = i|j的(i,j)对的数目 注意到相同的位 i&j 是确定的,x = i^j 是i和j不同的位的数目,这部分谁是 0 谁是 1 不固定 故(i,j)对的数目为 2^bits(x) 此时重写原式: C[k] = ∑ [k == x^y] [k == y-x] A[x]*2^bits(x) * B[y] 设 A'[x] = A[x]*2^bits(x) 由于 [k == x^y],第二个条件 [k == y-x] 等价于 bits(k) == bits(y) - bits(x) C[k] = ∑ [k == x^y] [bits(k) == bits(x) - bits(y)] A'[x] * B[y] 将 A,B,C三个数组按 bits 划分: C[bits(k)][k] = ∑ [k == x^y] A[bits(x)][x]*2^bits(x) * B[bits(y)][y] 最后按不同的维度(bits)做 FWT即可 */ #include <bits/stdc++.h> using namespace std; const int MOD = 998244353; const int N = 1<<20; int rev2; long long inv( long long a , long long m) { if (a == 1) return 1; return inv(m%a, m) * (m - m/a) % m; } void FWT(int a[], int n) { for (int d = 1; d < n; d <<= 1) for (int m = d<<1, i = 0; i < n; i += m) for (int j = 0; j < d; j++) { int x = a[i+j], y = a[i+j+d]; a[i+j] = (x+y) % MOD; a[i+j+d] = (x-y+MOD) % MOD; } } void UFWT(int a[], int n) { for (int d = 1; d < n; d <<= 1) for (int m = d<<1, i = 0; i < n; i += m) for (int j = 0; j < d; j++) { int x = a[i+j], y = a[i+j+d]; a[i+j] = 1LL*(x+y) * rev2 % MOD; a[i+j+d] = (1LL*(x-y)*rev2 % MOD + MOD) % MOD; } } int a[20][N], b[20][N], c[20][N]; int bits[N]; int m, n; void init() { rev2 = inv(2, MOD); bits[0] = 0; for (int i = 1; i < N; i++) bits[i] = bits[i>>1] + (i&1); } int main() { init(); scanf("%d", &m); n = 1<<m; for (int i = 0; i < n; i++) { int x; scanf("%d", &x); a[bits[i]][i] = 1LL*x * (1<<bits[i]) % MOD; } for (int i = 0; i < n; i++) { int x; scanf("%d", &x); b[bits[i]][i] = x; } for (int i = 0; i <= m; i++) FWT(a[i], n); for (int i = 0; i <= m; i++) FWT(b[i], n); for (int i = 0; i <= m; i++) for (int j = i; j <= m; j++) for (int k = 0; k < n; k++) { c[j-i][k] = (c[j-i][k] + 1LL*a[i][k] * b[j][k] % MOD) % MOD; } for (int i = 0; i <= m; i++) UFWT(c[i], n); long long ans = 0, base = 1; for (int i = 0; i < n; i++) { ans = ( ans + c[bits[i]][i] * base % MOD ) % MOD; base = base * 1526 % MOD; } printf("%lld\n", ans); }
我自倾杯,君且随意