HDU 6053 - TrickGCD | 2017 Multi-University Training Contest 2
/* HDU 6053 - TrickGCD [ 莫比乌斯函数,筛法分块 ] | 2017 Multi-University Training Contest 2 题意: 给出数列 A[N],问满足: 1 <= B[i] <= A[i] ; 对任意(l, r) (1<=l<=r<=n) ,使得 gcd(bl,...br) >= 2 ; 的 B[N] 数列的个数 分析: 设 gcd(b1,...bn) = k (k >= 2),此时 k 对答案的贡献为 (a1/k)*(a2/k)*(a3/k)*...*(an/k) 根据容斥原理,ans = +[k=一个素数之积 时对答案的贡献] -[k=两个素数之积 时对答案的贡献] +[k=三个素数之积 时对答案的贡献] ... 故任意k对答案的贡献系数 μ(k) = 0 , k是完全平方数的倍数 = (-1)^(n-1) , k = p1*p2*p3*...*pn ,p是素数 贡献系数可以O(nsqrt(n)) 或者 O(nlogn) 预处理,再或者可以看出μ(k) 是莫比乌斯函数的相反数 现在枚举k需要O(n)的时间,计算k对答案的贡献必须在O(sqrt(n))的时间之内 将a[]处理成权值数组,并求前缀和,设为 sum[] 对于每个k,对sum[]进行埃式筛法的分块,即根据k的倍数分块 此时每个k的贡献 = 1^(sum[2k-1]-sum[k-1]) * 2^(sum[3k-1]-sum[2k-1]) * 3^(sum[4k-1]-sum[3k-1]) ... 就做到 O(n(logn)^2) 编码时长: 40分钟(0) */ #include <bits/stdc++.h> using namespace std; #define LL long long const LL MOD = 1e9+7; const int N = 1e5+4; bool notp[N]; int prime[N], pnum, mu[N]; void Mobius() { memset(notp, 0, sizeof(notp)); mu[1] = 1; for (int i = 2; i < N; i++) { if (!notp[i]) prime[++pnum] = i, mu[i] = -1; for (int j = 1; prime[j]*i < N; j++) { notp[prime[j]*i] = 1; if (i%prime[j] == 0) { mu[prime[j]*i] = 0; break; } mu[prime[j]*i] = -mu[i]; } } for (int i = 0; i < N; i++) mu[i] = -mu[i]; } LL PowMod(LL a, int m) { if (a == 1 || m == 0) return 1; if (a == 0) return 0; LL res = 1; while (m) { if (m&1) res = res*a % MOD; a = a*a % MOD; m >>= 1; } return res; } int a[N]; int t, n; int sum[N]; int Max, Min; LL ans; void solve() { int i, j, k, p; ans = 0; for (i = 2; i <= Min; ++i) { if (!mu[i]) continue; LL res = 1; j = min(i, Max), k = min((i<<1)-1, Max); for (p = 1; ; ++p) { if (sum[k] - sum[j-1]) res = res*PowMod(p, sum[k] - sum[j-1]) % MOD; if (k == Max) break; j += i; k += i; if (k > Max) k = Max; } ans += mu[i]*res; if (ans > MOD) ans -= MOD; if (ans < 0) ans += MOD; } } int main() { int i; Mobius(); scanf("%d", &t); for (int tt = 1; tt <= t; ++tt) { scanf("%d", &n); for (i = 0; i < N; ++i) sum[i] = 0; for (i = 1; i <= n; ++i) { scanf("%d", &a[i]); ++sum[a[i]]; } Max = Min = a[1]; for (i = 2; i <= n; ++i) { Max = max(Max, a[i]); Min = min(Min, a[i]); } for (i = 1; i <= Max; ++i) sum[i] += sum[i-1]; solve(); printf("Case #%d: %lld\n", tt, ans); } }
我自倾杯,君且随意