HDU 6044 - Limited Permutation | 2017 Multi-University Training Contest 1

研究一下建树 :

/*
HDU 6044 - Limited Permutation [ 读入优化,笛卡尔树 ]  |  2017 Multi-University Training Contest 1
题意:
	给出两组序列 l[i], r[i], 代表以 p[i] 为最小值所在的区间的边界
	问 满足这些条件的序列 p 的个数
分析:
	必定能找到一个p[i] 使得 l[i] == 1, r[i] == n ,其将数组分成两块[1, i-1], [i+1, n]
	以之为根节点,将区间为[1, i-1] 和 [i+1, n] 的节点作为左右儿子,再在每一块上递归地进行划分,则构成一棵笛卡尔树
	能构成的笛卡尔树的形状是唯一的,若不能构成,则 ans = 0
	若能构成,则 以i为根的子树的方案数 f(i) = C(size_l+size_r, size_l) * f(l) * f(r)

	数据很多用fread读入
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 1e6+5;
const LL MOD = 1e9+7;
namespace IO {
    const int MX = 4e7; //1e7 占用内存 11000kb
    char buf[MX]; int c, sz;
    void begin() {
        c = 0;
        sz = fread(buf, 1, MX, stdin);//一次性全部读入
    }
    inline bool read(int &t) {
        while (c < sz && buf[c] != '-' && (buf[c] < '0' || buf[c] > '9')) c++;
        if (c >= sz) return false;//若读完整个缓冲块则退出
        bool flag = 0; if(buf[c] == '-') flag = 1, c++;
        for(t = 0; c < sz && '0' <= buf[c] && buf[c] <= '9'; c++) t = t * 10 + buf[c] - '0';
        if(flag) t = -t;
        return true;
    }
}
namespace COMB {
	int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘
	void init(){
		inv[1] = 1;
		for(int i = 2; i < N; i ++){
			inv[i] = (MOD - MOD / i) * 1LL * inv[MOD % i] % MOD;
		}
		F[0] = Finv[0] = 1;
		for(int i = 1; i < N; i ++){
			F[i] = F[i-1] * 1LL * i % MOD;
			Finv[i] = Finv[i-1] * 1LL * inv[i] % MOD;
		}
	}
	int comb(int n, int m){//comb(n, m)就是C(n, m)
		if(m < 0 || m > n) return 0;
		return F[n] * 1LL * Finv[n - m] % MOD * Finv[m] % MOD;
	}
}
struct Node
{
    int f, l, r;
}T[N];
int l[N], r[N];
int n;
int q[N], top;
inline bool cmp(const int& a,const int& b) {
    return (r[a] - l[a]) < (r[b] - l[b]);
}
int Build()
{
    top = 0;
    for (int i = 1; i <= n; i++)
    {
        int k = top;
        while (k && cmp(q[k-1], i)) --k;
        if (k != 0)
        {
            T[i].f = q[k-1];
            T[q[k-1]].r = i;
        }
        if (k != top)
        {
            T[q[k]].f = i;
            T[i].l = q[k];
        }
        q[k++] = i;
        top = k;
    }
    return q[0];
}
bool flag;
LL ans;
LL dfs(int x, int L, int R)
{
    if (!x) return 1;
    if (!flag) return 0;
    if (l[x] != L || r[x] != R) return 0;
    LL res = COMB::comb(R-L, R-x);
    res = res * dfs(T[x].l, L, x-1) % MOD;
    res = res * dfs(T[x].r, x+1, R) % MOD;
    if (res == 0) flag = 0;
    return res;
}
int main()
{
    COMB::init();
    IO::begin();
    for (int tt = 1; IO::read(n); ++tt)
    {
        for (int i = 1; i <= n; i++) T[i].l = T[i].r = T[i].f = 0;
        for (int i = 1; i <= n; i++) IO::read(l[i]);
        for (int i = 1; i <= n; i++) IO::read(r[i]);
        int root = Build();
        flag = 1;
        ans = dfs(root, 1, n);
        printf("Case #%d: %lld\n", tt, ans);
    }
}

  要么直接 map

#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 1e6+5;
const LL MOD = 1e9+7;
namespace fastIO {
	#define BUF_SIZE 100000
	//fread -> read
	bool IOerror = 0;
	inline char nc() {
		static char buf[BUF_SIZE], *p1 = buf + BUF_SIZE, *pend = buf + BUF_SIZE;
		if(p1 == pend) {
			p1 = buf;
			pend = buf + fread(buf, 1, BUF_SIZE, stdin);
			if(pend == p1) {
				IOerror = 1;
				return -1;
			}
		}
		return *p1++;
	}
	inline bool blank(char ch) {
		return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
	}
	inline void read(int &x) {
		char ch;
		while(blank(ch = nc()));
		if(IOerror)
			return;
		for(x = ch - '0'; (ch = nc()) >= '0' && ch <= '9'; x = x * 10 + ch - '0');
	}
	#undef BUF_SIZE
}
namespace COMB {
	int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘
	void init(){
		inv[1] = 1;
		for(int i = 2; i < N; i ++){
			inv[i] = (MOD - MOD / i) * 1LL * inv[MOD % i] % MOD;
		}
		F[0] = Finv[0] = 1;
		for(int i = 1; i < N; i ++){
			F[i] = F[i-1] * 1LL * i % MOD;
			Finv[i] = Finv[i-1] * 1LL * inv[i] % MOD;
		}
	}
	int comb(int n, int m){//comb(n, m)就是C(n, m)
		if(m < 0 || m > n) return 0;
		return F[n] * 1LL * Finv[n - m] % MOD * Finv[m] % MOD;
	}
}
typedef pair<int, int> P;
using namespace fastIO;
map<P, int> mp;
int t, n;
int l[N], r[N];
LL dfs(int l, int r)
{
    if (l > r) return 1;
    int x = mp[P(l, r)];
    if (!x) return 0;
    LL ans = COMB::comb(r-l, r-x);
    ans = ans * dfs(l, x-1) % MOD;
    ans = ans * dfs(x+1, r) % MOD;
    return ans;
}
int main()
{
    COMB::init();
    for (int tt = 1; read(n), !IOerror; ++tt)
    {
        mp.clear();
        for (int i = 1; i <= n; i++) read(l[i]);
        for (int i = 1; i <= n; i++) read(r[i]);
        for (int i = 1; i <= n; i++)
            mp[P(l[i], r[i])] = i;
        LL ans = dfs(1, n);
        printf("Case #%d: %lld\n", tt, ans);
    }
}

  

posted @ 2017-07-27 21:25  nicetomeetu  阅读(295)  评论(0编辑  收藏  举报