HDU 5904 - LCIS (BestCoder Round #87)
HDU 5904 - LCIS [ DP ] BestCoder Round #87
题意:
给定两个序列,求它们的最长公共递增子序列的长度, 并且这个子序列的值是连续的
分析:
状态转移方程式: dp[a[i]] = max(dp[a[i]], dp[a[i]-1] + 1);
发现其实可以简化为 dp[a[i]] = dp[a[i]-1] + 1;因为计算过程中dp[a[i]]不会降低
对两个序列都求一遍,然后取两者最小值的最大值
1 #include <cstdio> 2 #include <algorithm> 3 #include <iostream> 4 #include <cstring> 5 using namespace std; 6 const int MAXM = 1000005; 7 const int MAXN = 1000005; 8 int t, n, m; 9 int a[MAXN], b[MAXN]; 10 int dp1[MAXM], dp2[MAXM]; 11 int main() 12 { 13 scanf("%d", &t); 14 while (t--) 15 { 16 scanf("%d%d", &n, &m); 17 memset(dp1, 0, sizeof(dp1)); 18 memset(dp2, 0, sizeof(dp2)); 19 int top = 0; 20 for (int i = 1; i <= n; i++) 21 { 22 scanf("%d", &a[i]); 23 dp1[a[i]] = dp1[a[i]-1] + 1; 24 top = max(top, a[i]); 25 } 26 for (int i = 1; i <= m; i++) 27 { 28 scanf("%d", &b[i]); 29 dp2[b[i]] = dp2[b[i]-1] + 1; 30 top = max(top, b[i]); 31 } 32 int ans = 0; 33 for (int i = 1; i <= top; i++) ans = max(ans, min(dp1[i], dp2[i])); 34 printf("%d\n", ans); 35 } 36 }
我自倾杯,君且随意