HDU 1394 - Minimum Inversion Number

Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 
Output
For each case, output the minimum inversion number on a single line.
 
Sample Input
10 1 3 6 9 0 8 5 7 4 2
 
Sample Output
16
 
大致题意:
  一个由0..n-1组成的序列,每次可以把队首的元素移到队尾;
      求形成的n个序列中最小逆序对数目;
解题思路:
以下有两份代码:
  代码一:
    暴力法,复杂度 O(n^2);
    当吧 a[0] 移到队尾后,会减少 a[0] 个逆序对 同时会增加  (n-1)-a[0] 个逆序对;
    那么只要求出初始的逆序对数好了,剩下的可以推导得出;
  代码二:
    树状数组,复杂度0(nlogn);
    无非就是用树状数组求逆序对,注意数列从0开始的,要处理过;
    剩下的还是找规律;
 
 1 #include <cstdio>
 2 using namespace std;
 3 int main(){
 4     int n,a[5000+5],t;
 5     while(~scanf("%d",&n)){
 6         for(int i=0;i<n;i++) scanf("%d",&a[i]);
 7         t=0;
 8         for(int i=0;i<n;i++)
 9             for(int j=i+1;j<n;j++)
10                 if(a[i]>a[j]) t++;
11         int min=t;
12         for(int i=0;i<n;i++){
13             t=t-a[i]+(n-1)-a[i];
14             if(t<min) min=t;
15         }
16         printf("%d\n",min);
17     }
18 } 

 

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 using namespace std;
 5 #define N 5005
 6 int c[N],a[N],n,m;
 7 int modify(int x,int num){while(x<=n)c[x]+=num,x+=x&-x;}
 8 int sum(int x){int s=0;while(x>0)s+=c[x],x-=x&-x;return s;}
 9 int main(){
10     while(~scanf("%d",&n)){
11         memset(c,0,sizeof(c));
12         m=0;
13         for(int i=0;i<n;i++){
14             scanf("%d",&a[i]);
15             a[i]+=1;//0->n-1 >>> 1->n
16             modify(a[i],1);
17             m+=i+1-sum(a[i]);//0->n-1 >>> 1->n
18         } int ans=m;
19         for(int i=0;i<n;i++){
20             a[i]-=1;//变回来
21             ans=min(ans,m=m-a[i]+n-1-a[i]);
22         } printf("%d\n",ans);
23     } return 0;
24 }

 

posted @ 2016-01-28 01:52  nicetomeetu  阅读(158)  评论(0编辑  收藏  举报