poj 3259
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 28499 | Accepted: 10302 |
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
题意:John的农场里field块地,path条路连接两块地,hole个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。我们的任务是知道会不会在从某块地出发后又回来,看到了离开之前的自己。
思路:bellman_ford。由于存在负权边,Dijkstra便不能用了。题目简化下,就是看图中有没有负权环,有的话John可以无限次走这个环,使得时间一定能得到一个负值。所以有的存在负环话就是可以,没有的话就是不可以了。
#include <iostream>
#include <cstdio>
using namespace std;
#define fMax 505
#define eMax 5205
#define wMax 99999
struct A
{
int sta,end,time;
}edge[eMax];
int point_num,edge_num,dict[fMax];
bool bellman_ford()
{
for(int i=2;i<=point_num;i++)
dict[i]=wMax;
for(int i=1;i<=point_num;i++)
{
bool fals=0;
for(int j=1;j<=edge_num;j++)
{
int v=edge[j].sta;
int u=edge[j].end;
int w=edge[j].time;
if(dict[v]>dict[u]+w)
{
dict[v]=dict[u]+w;
fals=1;
}
}
if(!fals)
break;
}
for(int j=1;j<=edge_num;j++)
{
int v=edge[j].sta;
int u=edge[j].end;
int w=edge[j].time;
if(dict[v]>dict[u]+w)
{
dict[v]=dict[u]+w;
return 0;
}
}
return 1;
}
int main()
{
int farm;
scanf("%d",&farm);
while(farm--)
{
int field,path,hole;
scanf("%d %d %d",&field,&path,&hole);
int s,e,t,k=0;
for(int i=1;i<=path;i++)
{
scanf("%d %d %d",&s,&e,&t);
edge[++k].sta=s;
edge[k].end=e;
edge[k++].time=t;
edge[k].sta=e;
edge[k].end=s;
edge[k].time=t;
}
for(int i=1;i<=hole;i++)
{
scanf("%d %d %d",&s,&e,&t);
edge[++k].sta=s;
edge[k].end=e;
edge[k].time=-t;
}
point_num=field;
edge_num=k;
if(!bellman_ford())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}