hdu 1811 Rank of Tetris(并查集+拓扑排序)

Rank of Tetris

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2771    Accepted Submission(s): 756


Problem Description
自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球。

为 了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球Tetris高手排行榜,定时更新,名堂要比福布斯富豪榜还响。关于如何排 名,这个不用说都知道是根据Rating从高到低来排,如果两个人具有相同的Rating,那就按这几个人的RP从高到低来排。

终于,Lele要开始行动了,对N个人进行排名。为了方便起见,每个人都已经被编号,分别从0到N-1,并且编号越大,RP就越高。
同时Lele从狗仔队里取得一些(M个)关于Rating的信息。这些信息可能有三种情况,分别是"A > B","A = B","A < B",分别表示A的Rating高于B,等于B,小于B。

现在Lele并不是让你来帮他制作这个高手榜,他只是想知道,根据这些信息是否能够确定出这个高手榜,是的话就输出"OK"。否则就请你判断出错的原因,到底是因为信息不完全(输出"UNCERTAIN"),还是因为这些信息中包含冲突(输出"CONFLICT")。
注意,如果信息中同时包含冲突且信息不完全,就输出"CONFLICT"。
 

 

Input
本题目包含多组测试,请处理到文件结束。
每组测试第一行包含两个整数N,M(0<=N<=10000,0<=M<=20000),分别表示要排名的人数以及得到的关系数。
接下来有M行,分别表示这些关系
 

 

Output
对于每组测试,在一行里按题目要求输出
 

 

Sample Input
3 3
0 > 1
1 < 2
0 > 2
4 4
1 = 2
1 > 3
2 > 0
0 > 1
3 3
1 > 0
1 > 2
2 < 1
 

 

Sample Output
OK
CONFLICT
UNCERTAIN
分析:
(1)首先解决这道题用到的基础知识要先明白,就是并查集和拓扑排序
(2)关于并查集是用来处理=的情况的,当两个元素相等时,需要合并集合。
(3)拓扑排序,用来判断信息是否完整,是否出现冲突。
  a)信息不完整的表现是同时出现两个或两个以上的元素,其入度为0,且其根是自己(因为有可能是=合并后造成的情况)。
  b)出现冲突的表现是出现环了,这样就会造成拓扑排序的元素少于需要排序的元素,有的元素永远没有进行排序,是一个死循环的环了(详见拓扑排序原理)。
 刚开始做时找不到思路上网找了一些题解看看才明白点,这个代码是用了vector和queue数据结构的代码,用vector来模拟了临界表,同时用了queue来实现拓扑排序
View Code
#include <stdio.h>
#include <string.h>
#include <vector>
#include <queue>
#define MAX_NUM 100010

using namespace std;
// N、M 分别表示要排名的人数以及得到的关系数
int N,M;
int sum;//用来记录总元素个数
int A[MAX_NUM],B[MAX_NUM];
char oper[MAX_NUM];//比较运算符
//int num[MAX_NUM];
//根,用来判断是否为一个序列
int root[MAX_NUM];
//拓扑排序中使用,用来模仿临界表,这里的next用来记录比他大的所有的元素
vector<int> next[MAX_NUM];
int pre[MAX_NUM];//用来记录比其小的元素个数。

//找到根
int find_root(int a)
{
    if(root[a] == a)return a;
    return root[a] = find_root(root[a]);
}

//合并两个集合
int union_set(int a,int b)
{
    a = find_root(a);
    b = find_root(b);
    if(a==b)return 0;
    root[b]=a;
    return 1;
}
//初始化
void init()
{
    for(int i=0;i<N;i++)
    {
        root[i]=i;
        next[i].clear();
        pre[i]=0;
    }
}
//拓扑排序
void top_order()
{
    bool uncertain=false;
    queue<int> q;
    //将入度为0,且是根的节点放入队列中,
    //若队列中的结点个数大于,则说明信息不全
    for(int i=0;i<N;i++)
    if(pre[i]==0&&find_root(i)==i)
    q.push(i);
    while(!q.empty())
    {
        //确定信息不全,但是不能跳出,此时还可能是冲突
        if(q.size()>1)uncertain=true;
        int cur = q.front();
        q.pop();
        sum--;
        for(int i=0;i<next[cur].size();i++)
        {
            if(--pre[next[cur][i]]==0)
            q.push(next[cur][i]);
        }
    }
    if(sum>0)printf("CONFLICT\n");
    else if(uncertain)printf("UNCERTAIN\n");
    else printf("OK\n");
}

int main()
{
    int a,b;
    while(scanf("%d%d",&N,&M)!=EOF)
    {
        init();
        sum = N;
        for(int i=0;i<M;i++)
        {
            scanf("%d %c %d",&A[i],&oper[i],&B[i]);
            if(oper[i]=='=')
            {
                if(union_set(A[i],B[i]))//合并两个元素的集合合并,总数减少1
                sum--;
            }
        }
        for(int i=0;i<M;i++)
        {
            if(oper[i]=='=')continue;
            a = find_root(A[i]);
            b = find_root(B[i]);
            if(oper[i]=='>')
            {
                next[a].push_back(b);
                pre[b]++;
            }else{
                next[b].push_back(a);
                pre[a]++;
            }
        }
        top_order();
    }
    return 0;
}

 

关于下边的代码没有使用vector和queue,这里使用了数组和结构体,来模拟了临界表和queue来实现的拓扑排序。

View Code
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <queue>
#define MAX_NUM 100010

using namespace std;

//该结构体用来存储 比某个值小的节点,模仿临界表后边的链表
typedef struct Node
{
    int num;//数值
    Node *next;
}Node;

//用来模仿临界表的数组
struct
{
    int rd;//入度
    Node *next;
}vect[MAX_NUM];

// N、M 分别表示要排名的人数以及得到的关系数
int N,M;
int sum;//用来记录总元素个数
int A[MAX_NUM],B[MAX_NUM];
char oper[MAX_NUM];//比较运算符
//根,用来判断是否为一个序列
int root[MAX_NUM];
//拓扑排序中使用,用来模仿临界表,这里的next用来记录比他大的所有的元素

int que[MAX_NUM],front,rear;//模拟队列

//找到根
int find_root(int a)
{
    if(root[a] == a)return a;
    return root[a] = find_root(root[a]);
}

//合并两个集合
int union_set(int a,int b)
{
    a = find_root(a);
    b = find_root(b);
    if(a==b)return 0;
    root[b]=a;
    return 1;
}
//初始化
void init()
{
    memset(vect,0,sizeof(vect));
    for(int i=0;i<N;i++)
    root[i]=i;
    rear = front = 0;
}

void addNode(int a,int b)
{
    Node *no = (Node*)malloc(sizeof(Node));
    no->num=b;
    no->next = vect[a].next;
    vect[a].next = no;
    vect[b].rd++;
}

//交换两个元素
void swap(int &a,int &b)
{
    int tem = a;
    a = b;
    b = tem;
}

//拓扑排序
void top_order()
{
    bool uncertain=false;
    //将入度为0,且是根的节点放入队列中,
    //若队列中的结点个数大于,则说明信息不全
    for(int i = 0;i < N;i++)
    {
        if(vect[i].rd==0&&find_root(i)==i)
        que[rear++] = i;//入队,同时尾指针加1
    }
    while(front!=rear)
    {
        if(rear-front>1)//出现信息不全的情况
        uncertain = true;
        int cur = que[front++];
        sum--;
        for(Node *i=vect[cur].next;i!=NULL;i=i->next )
        {
            if(--vect[i->num].rd==0)
            que[rear++]=i->num;
        }
    }
    if(sum>0)printf("CONFLICT\n");
    else if(uncertain)printf("UNCERTAIN\n");
    else printf("OK\n");
}

int main()
{
    int a,b;
    while(scanf("%d%d",&N,&M)!=EOF)
    {
        init();
        sum = N;
        for(int i=0;i<M;i++)
        {
            scanf("%d %c %d",&A[i],&oper[i],&B[i]);
            if(oper[i]=='=')
            {
                if(union_set(A[i],B[i]))//合并两个元素的集合合并,总数减少1
                sum--;
            }
        }
        for(int i=0;i<M;i++)
        {
            if(oper[i]=='=')continue;
            a = find_root(A[i]);
            b = find_root(B[i]);
            if(oper[i]=='<')
            swap(a,b);
            addNode(a,b);
        }
        top_order();
    }
    return 0;
}

 

 

 

 

posted on 2012-10-18 17:11  NewPanderKing  阅读(1938)  评论(0编辑  收藏  举报

导航