HDU Exponentiation
Exponentiation |
Time Limit: 1000/500 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) |
Total Submission(s): 313 Accepted Submission(s): 100 |
Problem Description
Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.
This problem requires that you write a program to compute the exact value of Rn where R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0 < n <= 25. |
Input
The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.
|
Output
The output will consist of one line for each line of input giving the exact value of R^n. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don't print the decimal point if the result is an integer.
|
Sample Input
95.123 12
0.4321 20
5.1234 15
6.7592 9
98.999 10
1.0100 12
|
Sample Output
548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201
大数计算用java
public class Main { public static void main(String[] args){ Scanner cin = new Scanner(System.in); BigDecimal a,b; int n; while(cin.hasNext()){ a = cin.nextBigDecimal(); n = cin.nextInt(); b = BigDecimal.valueOf(1); for(int i= 0; i< n ;i++){ b = b.multiply(a); } b = b.stripTrailingZeros(); String s = b.toPlainString(); if(s.startsWith("0")) s = s.substring(1); System.out.println(s); } |
posted on 2011-07-31 10:01 NewPanderKing 阅读(261) 评论(0) 编辑 收藏 举报