[BZOJ 2817] 波浪

Link:

BZOJ 2817 传送门

 

Solution:

算是比较神的DP了吧,

首先这个绝对值处理起来很难受,肯定要想办法去掉

于是想到从小到大插入的方式,便不存在绝对值的问题

 

插入一个数只有5种情况,我们来分类讨论:

1.插入以后它两边都没有数。(权值$-2*i$,方案数$k+1-l$)

2.插入以后它两边都有数。(权值$2*i$,方案数$k-1$)

3.插入以后它的一边有数。(权值$0$,方案数$k*2-l$)

4.插入在边界上,且它旁边没有数。(权值$-i$,方案数$2-l$)

5.插入在边界上,且它旁边有数。(权值$i$,方案数$2-l$)

可以发现每种情况产生的权值都可以确定,且方案数也可以确定,于是想到便能使用DP转移

 

设$f[i][j][k][l]$表示当前插入$i$个数,权值为$j$,序列被分为$k$段,序列两端状态为$l$时的方案数

$l$表示序列两端是有0/1/2个数

 

接下来就是巨恶心的高精度处理了:

手写高精度速度肯定是不够的,

于是只能用正式OI不给用的黑科技__float128了,(讲道理是不能用的,但不管A了就行)

一篇介绍的文章 

能保留小数点后32位,整数位能表示到1e4392?超乎我的想象

(注意输出时要手动处理一下)

 

但这还不够,$k<=8$时还是TLE,

于是还要将输入分类,如果$k<=8$用double,否则才用__float128

学会使用Template和namespace来进行不同处理

 

Code:

#include <bits/stdc++.h>

using namespace std;
#define ll long long
#define RG register
const int M=4500;

namespace db{double f[2][2*M+1][101][3];}
namespace f128{__float128 f[2][2*M+1][101][3];}
int n,m,k;

template<class T> inline void print(T res)
{
    printf("%d.",(int)res);  //逐位输出
    while(k--)
    {
        res=(res-(int)res)*10;
        if(!k) res+=0.5;
        printf("%d",(int)res);
    }
}

template<class T> inline void solve(T f[2][2*M+1][101][3])
{
    f[1][M-1][1][1]=2;f[1][M-2][1][0]=1;f[0][M][1][2]=1;
    for(RG int i=2,cur=0,pre=1;i<=n;++i,pre=cur,cur^=1)
    {
        memset(f[cur],0,sizeof(f[cur]));
        for(RG int j=0;j<=2*M;++j)
            for(RG int k=1;k<=n-1;++k)
                for(RG int l=0;l<=2;++l)
                {
                    if(!f[pre][j][k][l]) continue;
                    if(j+2*i<=2*M) f[cur][j+2*i][k-1][l]+=f[pre][j][k][l]*(k-1);
                    if(j>=2*i) f[cur][j-2*i][k+1][l]+=f[pre][j][k][l]*(k+1-l);
                    f[cur][j][k][l]+=f[pre][j][k][l]*(k*2-l);
                    if(l<2)
                    {
                        if(j+i<=2*M) f[cur][j+i][k][l+1]+=f[pre][j][k][l]*(2-l);
                        if(j>=i) f[cur][j-i][k+1][l+1]+=f[pre][j][k][l]*(2-l);
                    }    
                }
    }
    
    T res=0;
    for(RG int i=M+m;i<=2*M;++i) res+=f[n&1][i][1][2];
    for(RG int i=2;i<=n;++i) res/=i;
    print(res);
}

int main()
{
    cin >> n >> m >> k;
    if(k<=8) solve(db::f);
    else solve(f128::f);
    return 0;
}

 

Review:

1、通过排序的预处理规避绝对值运算

 

2、DP时对边界条件加一个特殊状态

 

3、对__float128的使用(输出要特殊处理)

 

4、使用Template+namespace等方法提高代码重用性

posted @ 2018-05-30 22:39  NewErA  阅读(243)  评论(0编辑  收藏  举报