摘要: 原题链接 考察:容斥原理 or 莫比乌斯反演 思路: 枚举平方数: \(2^2,3^2,4^2,5^2,6^2,...,1e^{7^2}\) 对于$22$需要减去,$32$需要减去,$42$不需要计入,$62$需要减去...如果忽视指数,这就对应了莫比乌斯函数,我们预处理1e7以内的质数,然后利用$ 阅读全文
posted @ 2021-06-17 21:02 acmloser 阅读(67) 评论(0) 推荐(0) 编辑
摘要: 原题链接 考察:容斥原理 只有我不会的容斥原理. 错误思路: 正向考虑,然后根本算不出来 思路: 这里主要是抽象成四个条件: 第一行没有人 最后一行没有人. 第一列没有人 最后一列没有人. 我想的是分情况讨论边角的情况,结果是情况太复杂了.这里的容斥主要是抽象出四个条件. 而且处理剩余位置也很妙,每 阅读全文
posted @ 2021-06-17 19:38 acmloser 阅读(36) 评论(0) 推荐(0) 编辑
摘要: 原题链接 考察:莫比乌斯反演 思路: 发现gcd(i,j) = 1的损失能量都是1,gcd(i,j) = 2的,损失能量都是3...由此枚举gcd(i,j) = k,求$(n,m)$范围内$gcd(i,j) = k$的对数.时间复杂度大概是$O(n^{3/2})$ ##Code #include < 阅读全文
posted @ 2021-06-17 16:07 acmloser 阅读(31) 评论(0) 推荐(0) 编辑