【UR #5】怎样跑得更快 - 莫比乌斯反演

Description

\(p = 998244353\)

给你整数 \(n,c,d\) 。现有整数 \(x_1,\dots,x_n\)\(b_1, \dots , b_n\) 满足 \(0 \le x_1 , \dots , x_n , b_1 , \dots , b_n < p\) ,且对于 \(1\le i \le n\) 满足:

\[\sum_{j = 1}^{n} \gcd(i, j)^c \cdot \operatorname{lcm}(i, j)^d \cdot x_j \equiv b_i \pmod{p} \]

\(q\) 个询问,每次给出 \(b_1, \dots, b_n\),请你解出 \(x_1, \dots, x_n\) 的值。

Solution

先丢两个链接:

怎样跑得更快(莫比乌斯反演) - yyb

UOJ Round #5 题解 - vfleaking的博客

首先,根据小学奥数知识我们可以知道 \(\operatorname{lcm}(i,j)=\frac{ij}{\gcd(i,j)}\),于是原式子变为

\[\sum_{j = 1}^{n} \gcd(i, j)^{c-d} i^d j^d x_j \equiv b_i \pmod{p} \]

其实写成函数的形式后这种解法都可用

\[\sum_{j = 1}^{n} f(\gcd(i, j)) h(i) h(j) x_j \equiv b_i \pmod{p} \]

枚举 \(gcd\)

\[\begin{split} b_i &= \sum \limits_{d=1}^{n}f(d) \sum \limits_{j=1}^{n} \left[ gcd(i,j) = d \right] h(i) h(j) x_j \\ &= \sum \limits_{d=1}^{n}f(d) \sum \limits_{j=1}^{n} \left[ \frac{gcd(i,j)}{d} = 1 \right] h(i) h(j) x_j \\ &= \sum \limits_{d=1}^{n}f(d) \sum \limits_{d \mid j}^{n} h(i) h(j) \sum \limits_{k\mid \frac{gcd(i,j)}{d}} \mu(k) x_j \end{split} \]

\(T = kd\),再变换求和顺序,则有

\[\begin{split} b_i &= \sum \limits_{d=1}^{n}f(d) \sum \limits_{d \mid j}^{n} h(i) h(j) \sum \limits_{T\mid gcd(i,j)} \mu(\frac{T}{d}) x_j \\ &= h(i) \sum \limits_{T \mid i} \sum \limits_{T \mid j} \sum \limits_{d \mid T} f(d) h(j) \mu(\frac{T}{d}) x_j \\ &= h(i) \sum \limits_{T \mid i} \sum \limits_{T \mid j} h(j) x_j \sum \limits_{d \mid T} f(d)\mu(\frac{T}{d}) \end{split} \]

后半部分可以提前预处理,记作 \(f_r(T)\)

\[\begin{split} b_i &= h(i) \sum \limits_{T \mid i} \sum \limits_{T \mid j} h(j) x_j f_r(T) \\ &= h(i) \sum \limits_{T \mid i} f_r(T) \sum \limits_{T \mid j} h(j) x_j \end{split} \]

后面那部分可以提前算出来,记作 \(g(T)\)

\[\begin{split} b_i &= h(i) \sum \limits_{T \mid i} f_r(T) g(T) \end{split} \]

\(g_r(T) = f_r(T) g(T)\)

\[\begin{split} b_i &= h(i) \sum \limits_{T \mid i} g_r(T) \end{split} \]

再莫比乌斯反演一次

\[\begin{split} \frac{b_i}{h(i)} &= \sum \limits_{T \mid i} g_r(T) \\ g_r(i) &= \sum \limits_{T \mid i} \frac{b_T}{h(T)} \mu(\frac{i}{T}) \end{split} \]

那么 \(g_r\) 可以算出来,\(f_r\) 也可以算出来,于是可以算出 \(g\)

又由于 \(g(T)=\sum \limits_{T \mid j} h(j) x_j\),所以再进行一次莫比乌斯反演

\[h(j)x_j = \sum \limits_{T\mid j} g(T) \mu(\frac{j}{T}) \]

就可以把 \(h(j)x_j\) 算出来,就求出了 \(x_j\)

所以其实本质上就是用 \(b_i\) 除以 \(h(i)\) 然后莫比乌斯反演,然后再除以 \(f\) 的莫比乌斯反演,再莫比乌斯反演,再除以 \(h(j)\)

三个莫比乌斯反演掷地有声。XDXDXD
sto vfleaking orz

Code

Talk is cheap. Show me the code.

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const ll mod = 998244353;
const int _ = 1e5 + 10;
int N, c, d, Q, mu[_], b[_];
ll h[_], f[_], fr[_], invh[_], invfr[_], t[_], gr[_], g[_];

inline int ty() {
  int x = 0, f = 1;
  char ch = getchar();
  while (ch < '0' || ch > '9') {
    if (ch == '-') f = -1;
    ch = getchar();
  }
  while (ch >= '0' && ch <= '9') {
    x = x * 10 + ch - '0';
    ch = getchar();
  }
  return x * f;
}

ll fastPow(ll a, ll b) {
  ll ret = 1;
  for (; b; b >>= 1) {
    if (b & 1) ret = ret * a % mod;
    a = a * a % mod;
  }
  return ret;
}

void getMu(int lim = 1e5) {
  static int cnt, p[_], vis[_];
  mu[1] = 1;
  for (int i = 2; i <= lim; ++i) {
    if (!vis[i]) p[++cnt] = i, mu[i] = -1;
    for (int j = 1; j <= cnt && i * p[j] <= lim; ++j) {
      vis[i * p[j]] = 1;
      if (i % p[j] == 0) {
        mu[i * p[j]] = 0;
        break;
      }
      mu[i * p[j]] = -mu[i];
    }
  }
}

int main() {
#ifndef ONLINE_JUDGE
  freopen("run.in", "r", stdin);
  freopen("run.out", "w", stdout);
#endif
  getMu();
  N = ty(), c = ty(), d = ty(), Q = ty();
  for (int i = 1; i <= N; ++i) {
    h[i] = fastPow(i, d);
    invh[i] = fastPow(h[i], mod - 2);
    f[i] = fastPow(i, (c - d + (mod - 1)) % (mod - 1));  // 扩展欧拉定理
  }
  for (int i = 1; i <= N; ++i)
    for (int j = i; j <= N; j += i)
      fr[j] = (fr[j] + mu[j / i] * f[i] % mod) % mod;
  for (int i = 1; i <= N; ++i) invfr[i] = fastPow(fr[i], mod - 2);
  while (Q--) {
    bool flag = true;
    for (int i = 1; i <= N; ++i) b[i] = ty();
    for (int i = 1; i <= N; ++i) {
      t[i] = b[i] * invh[i] % mod;
      if (b[i] && !h[i]) flag = false;
    }
    memset(gr, 0, sizeof(ll) * (N + 1));
    for (int i = 1; i <= N; ++i)
      for (int j = i; j <= N; j += i)
        gr[j] = (gr[j] + mu[j / i] * t[i] % mod + mod) % mod;
    for (int i = 1; i <= N; ++i) {
      g[i] = gr[i] * invfr[i] % mod;
      if (gr[i] && !invfr[i]) flag = false;
    }
    memset(t, 0, sizeof(ll) * (N + 1));
    for (int i = 1; i <= N; ++i)
      for (int j = i; j <= N; j += i)
        t[i] = (t[i] + mu[j / i] * g[j] % mod + mod) % mod;
    for (int i = 1; i <= N; ++i) t[i] = t[i] * invh[i] % mod;
    if (flag)
      for (int i = 1; i <= N; ++i) printf("%lld ", t[i]);
    else
      cout << -1;
    puts("");
  }
  return 0;
}
posted @ 2020-06-14 21:57  newbielyx  阅读(200)  评论(0编辑  收藏  举报