基于visual Studio2013解决算法导论之029二叉搜索树
![]()
题目
二叉搜索树
解决代码及点评
#include <stdio.h> #include <malloc.h> #include <stdlib.h> typedef struct BSTree { int nValue; struct BSTree *pLChild; struct BSTree *pRChild; }BSTree, *PBSTree; PBSTree InsertBSTree(PBSTree pRoot, int nValue) { if (pRoot == NULL) { pRoot = (PBSTree)malloc(sizeof(BSTree)); if (!pRoot) { printf("分配内存失败!\n"); return NULL; } pRoot->nValue = nValue; pRoot->pLChild = NULL; pRoot->pRChild = NULL; } else { if (pRoot->nValue > nValue) { pRoot->pLChild = InsertBSTree(pRoot->pLChild, nValue); } else if (pRoot->nValue < nValue) { pRoot->pRChild = InsertBSTree(pRoot->pRChild, nValue); } } return pRoot; } PBSTree SearchBSTree(PBSTree pRoot, int nValue) { if (pRoot == NULL) { return NULL; } if (pRoot->nValue == nValue) { return pRoot; } else if (pRoot->nValue > nValue) { return SearchBSTree(pRoot->pLChild, nValue); } else { return SearchBSTree(pRoot->pRChild, nValue); } } //删除BST中一个结点 void DeleteNode(PBSTree *pDel) { PBSTree pTmp,pLChildMax; if ((*pDel)->pLChild && (*pDel)->pRChild) {//左右子树都不为空 则将左子树中最大值的右指针指向要删除结点的右子树 //然后将要删除结点的左子树根结点放到要删除结点的位置 pTmp = pLChildMax = (*pDel)->pLChild; while (pLChildMax->pRChild) { pLChildMax = pLChildMax->pRChild; } pLChildMax->pRChild = (*pDel)->pRChild; free((*pDel)); (*pDel) = pTmp; } else if (!(*pDel)->pLChild) {//左子树为空 pTmp = *pDel; (*pDel) = (*pDel)->pRChild; free(pTmp); } else if (!(*pDel)->pRChild) {//右子树为空 pTmp = *pDel; (*pDel) = (*pDel)->pLChild; free(pTmp); } } //删除操作 //设p,p1,r是指针变量,p↑表示s要删除的结点, //p1↑表示p↑的父母结点,则删除可以按如下规定进行: //1 若结点p↑没有左子树,则用右子树的根代替被删除的结点p↑ //2 若结点p↑有左子树,则在左子树里找按中序周游的最后 //一个结点r↑,将r↑的右指针置成指向p↑的右子树的根, //然后用结点p↑的左子树的根去代替被删除的结点p↑ void DeleteBSTree(PBSTree *pRoot, int nValue) { if (!SearchBSTree((*pRoot), nValue)) { printf("没有该元素,无法删除!\n"); return; }; if (nValue == (*pRoot)->nValue) { DeleteNode(pRoot); } else if ((*pRoot)->nValue > nValue) { DeleteBSTree(&(*pRoot)->pLChild, nValue); } else { DeleteBSTree(&(*pRoot)->pRChild, nValue); } } PBSTree DeleteBSTree1(PBSTree pRoot, int nValue) { if (pRoot == NULL) { printf("树为空!\n"); return NULL; } if (pRoot->nValue > nValue) { pRoot->pLChild = DeleteBSTree1(pRoot->pLChild, nValue); } else if (pRoot->nValue < nValue) { pRoot->pRChild = DeleteBSTree1(pRoot->pRChild, nValue); } else {//pRoot即为要删除的结点 if(pRoot->pLChild && pRoot->pRChild) {//左右子树都不为空 //将左子树的最大值赋值给要删除的结点,再删除左子树的最大值结点(叶子结点) PBSTree pLChildMax = pRoot->pLChild; while (pLChildMax->pRChild) { pLChildMax = pLChildMax->pRChild; } pRoot->nValue = pLChildMax->nValue; pRoot->pLChild = DeleteBSTree1(pRoot->pLChild, pRoot->nValue); } else { PBSTree pTmp = pRoot; if (pRoot->pLChild == NULL) {//右子树为空 pRoot = pRoot->pLChild; } else if (pRoot->pRChild == NULL) {//左子树为空 pRoot = pRoot->pLChild; } delete pTmp; } } return pRoot; } void InOrder(PBSTree pRoot) { if (!pRoot) { return; } InOrder(pRoot->pLChild); printf("%d ", pRoot->nValue); InOrder(pRoot->pRChild); } PBSTree GetParent(PBSTree pRoot, int nValue) { if (pRoot == NULL) {//BST树为空 return NULL; } if (pRoot->pLChild && pRoot->pLChild->nValue == nValue) { return pRoot; } if (pRoot->pRChild && pRoot->pRChild->nValue == nValue) { return pRoot; } PBSTree ptemp = NULL; ptemp = GetParent(pRoot->pLChild, nValue); if(ptemp != NULL) return ptemp; ptemp = GetParent(pRoot->pRChild, nValue); if(ptemp != NULL) return ptemp; } int main() { PBSTree pRoot = NULL; int data[] = {12,3,2,34,1,23,44,667,23,3}; for (int i = 0; i < sizeof(data) / sizeof(int); i++) { pRoot = InsertBSTree(pRoot, data[i]); } InOrder(pRoot); PBSTree p = SearchBSTree(pRoot, 311); if (p) { printf("有该元素%d\n", p->nValue); } else { printf("没有该元素!\n"); } //DeleteBSTree1(pRoot, 12); printf("\n"); InOrder(pRoot); p = GetParent(pRoot, 23); if (p) { printf("父结点为%d\n", p->nValue); } else { printf("无父结点!\n"); } system("pause"); return 0; }
代码下载及其运行
代码下载地址:http://download.csdn.net/detail/yincheng01/6858815
解压密码:c.itcast.cn
下载代码并解压后,用VC2013打开interview.sln,并设置对应的启动项目后,点击运行即可,具体步骤如下:
1)设置启动项目:右键点击解决方案,在弹出菜单中选择“设置启动项目”
2)在下拉框中选择相应项目,项目名和博客编号一致
3)点击“本地Windows调试器”运行
程序运行结果