生成器(generator) 详解

1. 生成器是什么?

利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。
 
 
2.列表生成式
 
2.1列表推导式书写形式:  
[表达式 for 变量 in 列表]    或者  [表达式 for 变量 in 列表 if 条件]
示例代码如下:
>>>[i for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
示例代码如下:
>>>[x**2 for x in [1,2,5,8,7] if x>5]
[64, 49]
 
2.2 列表生成式:
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
列表生成式书写形式:  
 (表达式 for 变量 in 列表)   或者  (表达式 for 变量 in 列表 if 条件)
列表生成式不同于列表推导式, 创建列表推导式和列表生成式的区别仅在于最外层的”[]“和"()",列表推导式是一个list,而列表生成式是一个generator。切不可相混淆。
 

3. 创建生成器方法1

生成器表达式:要创建一个生成器,有很多种方法。第一种方法很简单,即生成器表达式,只要把一个列表推导式的 [ ] 改成 ( );
如下代码返回的不是一个列表,而是一个生成器对象, 可通过 next() 函数 或者__next__() 方法获得generator的下一个返回值:
>>>obj = (i for i in range(5))
>>>obj
<generator object <genexpr> at 0x03F79D80>
>>>next(obj)
0
>>>next(obj)
1
>>>obj.__next__()
2
>>>obj.__next__()
3
>>>obj.__next__()
4

 

注意:generator保存的是算法,每次调用next()方法,就计算出generator的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。因为generator也是可迭代对象,所以可以使用for循环来取出数据。

>>> list = (x *2 for x in range(5))
>>> for num in list:
...          print(num)
...
0
2
4
6
8

 

4. 创建生成器方法2

生成器函数: 在函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是生成器函数。

但是生成器函数可以生产一个无限的序列,这样列表根本没有办法进行处理。yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator。generator非常强大。如果推算的算法比较复杂,用类似列表生成式的 for 循环无法实现的时候,还可以用函数来实现。

In [30]: def fib(n):
  ....:   current = 0
  ....:   num1, num2 = 0, 1
  ....:   while current < n:
  ....:     num = num1
  ....:     nm1, num2 = num2, num1+num2
  ....:     current += 1
  ....:     yield num
  ....:     return 'done' ....: In [31]: F = fib(5) In [32]: next(F) Out[32]: 0 In [33]: next(F) Out[33]: 1 In [34]: next(F) Out[34]: 1 In [35]: next(F) Out[35]: 2 In [36]: next(F) Out[36]: 3 In [37]: next(F) --------------------------------------------------------------------------- StopIteration Traceback (most recent call last) <ipython-input-37-8c2b02b436bn> in <module>() ----> 1 next(F) StopIteration: done
 
在使用生成器实现的方式中,我们将原本在迭代器__next__方法中实现的基本逻辑放到一个函数中来实现,但是将每次迭代返回数值的return换成了yield,此时新定义的函数便不再是函数,而是一个生成器了。
简单来说:只要在def中有yield关键字的 就称为 生成器.
在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield num 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield num 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

 

5. yield 与 return

5.1 在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;

>>> def g1():
...   yield 6 
... 
>>> g=g1() 
>>> next(g)  #第一次调用next(g)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。 
6
>>> next(g)  #程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常。 
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
StopIteration 
>>>

 

5.2 如果在return后返回一个值,那么这个值为StopIteration异常的说明,不是程序的返回值。

>>> def g2():
...   yield 'hello' 
...   return 'error information' 
... 
>>> g=g2()
>>> next(g) 
'hello' >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration: error information

 

5.3 如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

>>> def g3():
...   yield 'a' 
...   return 
...   yield 'b' 
... 
>>> g=g3() 
>>> next(g) #程序停留在执行完yield 'a'语句后的位置。 
'a'
>>> next(g) #执行到此处,程序发现下一条语句是return,所以抛出StopIteration异常,这样yield 'b'语句永远也不会执行。 
Traceback (most recent call last):
    File "<stdin>", line 1, in <module> 
StopIteration

 

5.4 close()函数   手动关闭生成器函数,后面的调用会直接返回StopIteration异常。

>>> def g4():
...  yield 1
...  yield 2 
...  yield 3 
...
>>> g=g4() 
>>> next(g) 
1 
>>> g.close() 
>>> next(g) #关闭后,yield2 和yield3 语句将不再起作用 
Traceback (most recent call last):
    File "<stdin>", line 1, in <module> 
StopIteration
 
5.5 send()函数 
我们除了可以使用next()函数来唤醒生成器继续执行外,还可以使用send()函数来唤醒执行。使用send()函数的一个好处是可以在唤醒的同时向断点处传入一个附加数据。生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
In [35]: def gen():
....:     i = 0
....:     while i<5:
....:       temp = yield i
....:       print(temp)
....:       i+=1
....:

In [43]: f = gen()

In [44]: next(f)
Out[44]: 0

In [45]: f.send('haha')
haha
Out[45]: 1

In [46]: next(f)
None
Out[46]: 2

In [47]: f.send('haha')
haha
Out[47]: 3

上方代码执行到yield时,gen函数作用暂时保存,返回 i 的值; temp接收下次f.send("haha"),即send发送过来的值,next(f)等价f.send(None)

总结

  • 使用了yield关键字的函数不再是函数,而是生成器。(使用了yield的函数就是生成器)
  • 可作用于for循环的对象都是Iterable类型;
  • next(f) 等价于 f.send(None)
  • yield关键字有两点作用:
    • 保存当前运行状态(断点),然后暂停执行,即将生成器(函数)挂起
    • 将yield关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用
  • 可以使用next()函数让生成器从断点处继续执行,即唤醒生成器(函数)
posted @ 2018-11-21 00:07  皮皮虾打怪兽  阅读(1357)  评论(0编辑  收藏  举报