普通哈希:
var x = hash(dataKey) % N
一致性哈希:
将数据的key的hashcode与存放数据的节点(如缓存节点)的IP(或服务器名)的hashcode都分布到同一个环形数值空间,比如0~2^32-1。然后,把数据的hashcode沿着顺时针方向找第一个存放数据的节点的hashcode,找到的那个就是要存放的节点。
var dataValue = hash(dataKey) % N
var nodeValue = hash(nodeIP) % N
将dataValue沿数值空间顺时针寻找第一个nodeValue,找到的那个对应的node就是要存放数据的节点。
一致性哈希数据不均匀的问题:
通过增加虚拟节点的思路,为每个node设计多个虚拟节点(比如100个),虚拟节点可以在物理节点的IP的基础之上加上数字后缀。然后把虚拟节点hash分布到hash环。然后我们先按照上面的一致性哈希思路计算出需要存放的虚拟节点,然后再根据虚拟节点和物理节点的对应关系,找到具体的物理节点。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)